Skip to main content
Log in

Reactive oxygen species derived from NAD(P)H oxidase play a role on ethanol-induced hypertension and endothelial dysfunction in rat resistance arteries

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Chronic ethanol consumption is a risk factor for cardiovascular diseases. We studied whether NAD(P)H oxidase-derived reactive oxygen species (ROS) play a role in ethanol-induced hypertension, vascular dysfunction, and protein expression in resistance arteries. Male Wistar rats were treated with ethanol (20 % v/v) for 6 weeks. Ethanol treatment increased blood pressure and decreased acetylcholine-induced relaxation in the rat mesenteric arterial bed (MAB). These responses were attenuated by apocynin (30 mg/kg/day; p.o. gavage). Ethanol consumption increased superoxide anion (O2 ) generation and decreased nitrate/nitrite (NO x ) concentration in the rat MAB and apocynin prevented these responses. Conversely, ethanol did not affect the concentration of hydrogen peroxide (H2O2) and reduced glutathione (GSH) or the activity of superoxide dismutase (SOD) and catalase (CAT) in the rat MAB. Ethanol increased interleukin (IL)-10 levels in the rat MAB but did not affect the levels of tumor necrosis factor (TNF)-α, IL-6, or IL-1β. Ethanol increased the expression of Nox2 and the phosphorylation of SAPK/JNK, but reduced eNOS expression in the rat MAB. Apocynin prevented these responses. However, ethanol treatment did not affect the expression of Nox1, Nox4, p38MAPK, ERK1/2, or SAPK/JNK in the rat MAB. Ethanol increased plasma levels of TBARS, TNF-α, IL-6, IL-1β, and IL-10, whereas it decreased NO x levels. The major finding of our study is that NAD(P)H oxidase-derived ROS play a role on ethanol-induced hypertension and endothelial dysfunction in resistance arteries. Moreover, ethanol consumption affects the expression and phosphorylation of proteins that regulate vascular function and NAD(P)H oxidase-derived ROS play a role in such responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bendall JK, Rinze R, Adlam D, Tatham AL, de Bono J, Wilson N, Volpi E, Channon KM (2007) Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice. Circ Res 100(7):1016–1025

    Article  CAS  PubMed  Google Scholar 

  2. Bird GL, Sheron N, Goka AK, Alexander GJ, Williams RS (1990) Increased plasma tumor necrosis factor in severe alcoholic hepatitis. Ann Inter Med 112(12):917–920

    Article  CAS  Google Scholar 

  3. Carda AP, Marchi KC, Rizzi E, Mecawi AS, Antunes-Rodrigues J, Padovan CM, Tirapelli CR (2015) Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress. Stress 18(2):233–243

    Article  CAS  PubMed  Google Scholar 

  4. Chaudière J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37(9–10):949–962

    Article  PubMed  Google Scholar 

  5. Dikalova A, Clempus R, Lassègue B, Cheng G, McCoy J, Dikalov S, San Martin A, Lyle A, Weber DS, Weiss D, Taylor WR, Schmidt HH, Owens GK, Lambeth JD, Griendling KK (2005) Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112(17):2668–2676

    Article  CAS  PubMed  Google Scholar 

  6. Ebeigbe AB, Cressier F, Konneh MK, Luu TD, Criscione L (1990) Influence of NG-monomethyl-L-arginine on endothelium-dependent relaxations in the perfused mesenteric vascular bed of the rat. Biochem Biophys Res Commun 169(3):873–879

    Article  CAS  PubMed  Google Scholar 

  7. Enomoto N, Schemmer P, Ikejima K, Takei Y, Sato N, Brenner DA, Thurman RG (2001) Long-term alcohol exposure changes sensitivity of rat Kupffer cells to lipopolysaccharide. Alcohol Clin Exp Res 25(9):1360–1367

    Article  CAS  PubMed  Google Scholar 

  8. Fahimi HD, Kino M, Hicks L, Thorp KA, Abelman WH (1979) Increased myocardial catalase in rats fed ethanol. Am J Pathol 96(2):373–390

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gonzaga NA, Callera GE, Yogi A, Mecawi AS, Antunes-Rodrigues J, Queiroz RH, Touyz RM, Tirapelli CR (2014) Acute ethanol intake induces mitogen-activated protein kinase activation, platelet-derived growth factor receptor phosphorylation, and oxidative stress in resistance arteries. J Physiol Biochem 70(2):509–523

    Article  CAS  PubMed  Google Scholar 

  10. Gonzaga NA, Mecawi AS, Antunes-Rodrigues J, De Martinis BS, Padovan CM, Tirapelli CR (2015) Ethanol withdrawal increases oxidative stress and reduces nitric oxide bioavailability in the vasculature of rats. Alcohol 49(1):47–56

    Article  CAS  PubMed  Google Scholar 

  11. Hill DB, D’Souza NB, Lee EY, Burikhanov R, Deaciuc IV, de Villiers WJ (2002) A role for interleukin-10 in alcohol-induced liver sensitization to bacterial lipopolysaccharide. Alcohol Clin Exp Res 26(1):74–82

    Article  CAS  PubMed  Google Scholar 

  12. Husain K, Ferder L, Ansari RA, Lalla J (2011) Chronic ethanol ingestion induces aortic inflammation/oxidative endothelial injury and hypertension in rats. Hum Exp Toxicol 30(8):930–939

    Article  CAS  PubMed  Google Scholar 

  13. Klatsky AL, Friedman GD, Siegelaub AB, Gérard MJ (1977) Alcohol consumption and blood pressure Kaiser-Permanente Multiphasic Health Examination data. N Engl J Med 296:1194–1200

    Article  CAS  PubMed  Google Scholar 

  14. Klatsky AL, Friedman GD, Armstrong MA (1986) The relationships between alcoholic beverage use and other traits to blood pressure: a new Kaiser Permanente study. Circulation 73:628–636

    Article  CAS  PubMed  Google Scholar 

  15. Kono H, Rusyn I, Yin M, Gäbele E, Yamashina S, Dikalova A, Kadiiska MB, Connor HD, Mason RP, Segal BH, Bradford BU, Holland SM, Thurman RG (2000) NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest 106(7):867–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lawes CM, Vander Hoorn S, Rodgers A (2008) International Society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet 371:1513

    Article  PubMed  Google Scholar 

  17. Lee YJ, Aroor AR, Shukla SD (2002) Temporal activation of p42/44 mitogen-activated protein kinase and c-Jun N-terminal kinase by acetaldehyde in rat hepatocytes and its loss after chronic ethanol exposure. J Pharmacol Exp Ther 301(3):908–914

    Article  CAS  PubMed  Google Scholar 

  18. Lull ME, Levesque S, Surace MJ, Block ML (2011) Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751)(SL) mice. Plos One 6:1–11

    Article  Google Scholar 

  19. Mallat Z, Heymes C, Ohan J, Faggin E, Leseche G, Tedgui A (1999) Expression of interleukine-10 in advanced human atherosclerotic plaques: relation to inducible nitric oxide synthase expression and cell death. Arterioscler Thromb Vasc Biol 19:611–616

    Article  CAS  PubMed  Google Scholar 

  20. Marchi KC, Muniz JJ, Tirapelli CR (2014) Hypertension and chronic ethanol consumption: what do we know after a century of study? World J Cardiol 6(5):283–294

    PubMed  PubMed Central  Google Scholar 

  21. Masamune A, Kikuta K, Satoh M, Satoh A, Shimosegawa T (2002) Alcohol activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells. J Pharmacol Exp Ther 302(1):36–42

    Article  CAS  PubMed  Google Scholar 

  22. Mendes LO, Scarano WR, Rochel-Maia SS, Fioruci-Fontaneli BA, Chuffa LG, Martinez FE (2014) Testosterone therapy differently regulates the anti- and pro-inflammatory cytokines in the plasma and prostate of rats submitted to chronic ethanol consumption (UChB). Am J Reprod Immunol 72(3):317–325

    Article  CAS  PubMed  Google Scholar 

  23. Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM (2015) Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol 31(5):631–641

    Article  PubMed  Google Scholar 

  24. Montezano AC, Touyz RM (2012) Reactive oxygen species and endothelial function—role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 110(1):87–94

    Article  CAS  PubMed  Google Scholar 

  25. Moore KW, de Waal-Malefyt R, Coffiman RL, O’Gara A (2001) Interleukine- 10 and interleukine-10 receptor. Annu Rev Immol 19:683–765

    Article  CAS  Google Scholar 

  26. Okafor OY, Ol E, Ajiboye JA, Adejobi RO, Owolabi FO, Kosoko SB (2011) Modulatory effect of pineapple peel extract on lipid peroxidation, catalase activity and hepatic biomarker levels in blood plasma of alcohol-induced oxidative stressed rats. Asian Pac J Trop Biomed 1(1):12–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Passaglia P, Ceron CS, Mecawi AS, Antunes-Rodrigues J, Coelho EB, Tirapelli CR (2015) Angiotensin type 1 receptor mediates chronic ethanol consumption-induced hypertension and vascular oxidative stress. Vascul Pharmacol 74:49–59

    Article  CAS  PubMed  Google Scholar 

  28. Pearson G, Robinson F, Beers Gibson T, Xu B-E, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    CAS  PubMed  Google Scholar 

  29. Polikandriotis JA, Rupnow HL, Elms SC, Clempus RE, Campbell DJ, Sutliff RL, Brown LAS, Guidot DM, Hart CM (2006) Chronic ethanol ingestion increases superoxide production and NADPH oxidase expression in the lung. Am J Respir Cell Mol Biol 34(3):314–319

    Article  CAS  PubMed  Google Scholar 

  30. Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT (2008) Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 18:5–10

    Google Scholar 

  31. Ray R, Murdoch CE, Wang M, Santos CX, Zhang M, Alom-Ruiz S, Anilkumar N, Ouattara A, Cave AC, Walker SJ, Grieve DJ, Charles RL, Eaton P, Brewer AC, Shah AM (2011) Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler Thromb Vasc Biol 31(6):1368–1376

    Article  CAS  PubMed  Google Scholar 

  32. Santilli F, D’Ardes D, Davì G (2015) Oxidative stress in chronic vascular disease: from prediction to prevention. Vascul Pharmacol 74:23–37

    Article  CAS  PubMed  Google Scholar 

  33. Simplicio JA, Resstel LB, Tirapelli DP, D’Orléans-Juste P, Tirapelli CR (2015) Contribution of oxidative stress and prostanoids in endothelial dysfunction induced by chronic fluoxetine treatment. Vascul Pharmacol 73:124–137

    Article  CAS  PubMed  Google Scholar 

  34. Stefanska J, Pawliczak R (2008) Apocynin: molecular aptitudes. Mediators Inflamm 2008:106507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stolk J, Rossie W, Dijkman JH (1994) Apocynin improves the efficacy of secretory leukocyte protease inhibitor in experimental emphysema. Am J Respir Crit Care Med 150(6):1628–1631

    Article  CAS  PubMed  Google Scholar 

  36. Tilg H, Wilmer A, Vogel W, Herold M, Nolchen B, Judmaier G, Huber C (1992) Serum levels of cytokines in chronic liver diseases. Gastroenterology 103(1):264–274

    Article  CAS  PubMed  Google Scholar 

  37. Tirapelli CR, Casolari DA, Yogi A, Tostes RC, Legros E, Lanchote VL, Uyemura SA, de Oliveira AM (2007) Effect of chronic ethanol consumption on endothelin-1 generation and conversion of exogenous big-endothelin-1 by the rat carotid artery. Alcohol 41(2):77–85

    Article  CAS  PubMed  Google Scholar 

  38. Tirapelli CR, Leone AF, Yogi A, Tostes RC, Lanchote VL, Uyemura AS, Resstel LB, Corrêa FM, Padovan CM, de Oliveira AM, Coelho EB (2008) Ethanol consumption increases blood pressure and alters the responsiveness of the mesenteric vasculature in rats. J Pharm Pharmacol 60(3):331–341

    Article  CAS  PubMed  Google Scholar 

  39. Touyz RM (2003) Recent advances in intracellular signalling in hypertension. Curr Opin Nephrol Hypertens 12:165–174

    Article  CAS  PubMed  Google Scholar 

  40. Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano PJ, Schiffrin EL (2002) Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 90(11):1205–1213

    Article  CAS  PubMed  Google Scholar 

  41. Urso T, Gavaler JS, Van Thiel DH (1981) Blood ethanol levels in sober alcohol users seen in an emergency room. Life Sci 28:1053–1056

    Article  CAS  PubMed  Google Scholar 

  42. Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL (2004) Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens 22(3):535–542

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Ke Z, Chen G, Xu M, Bower KA, Frank JA, Zhang Z, Shi X, Luo J (2012) Cdc42-dependent activation of NADPH oxidase is involved in ethanol-induced neuronal oxidative stress. PLoS One 7(5):e38075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yeligar SM, Harris FL, Hart CM, Brown LA (2012) Ethanol induces oxidative stress in alveolar macrophages via upregulation of NADPH oxidases. J Immunol 188(8):3648–3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zahr NM, Luong R, Sullivan EV, Pfefferbaum A (2010) Measurement of serum, liver, and brain cytokine induction, thiamine levels, and hepatopathology in rats exposed to a 4-day alcohol binge protocol. Alcohol Clin Exp Res 34(11):1858–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from FAPESP [grant numbers 2013/03965-7 and 2013/15824-9].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Tirapelli.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simplicio, J.A., do Vale, G.T., Gonzaga, N.A. et al. Reactive oxygen species derived from NAD(P)H oxidase play a role on ethanol-induced hypertension and endothelial dysfunction in rat resistance arteries. J Physiol Biochem 73, 5–16 (2017). https://doi.org/10.1007/s13105-016-0519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0519-z

Keywords

Navigation