Skip to main content

Advertisement

Log in

Early septic shock induces loss of oxidative phosphorylation yield plasticity in liver mitochondria

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

We aimed to study the change in mitochondrial oxidative phosphorylation efficiency occurring at the early stage of septic shock in an experimental model. Thirty-six male Wistar rats were divided into two groups. In the first group, a cecal ligation and puncture (CLP) was carried out to induce septic shock for 5 h. The second group includes sham-operated rats and constitutes the control group. Blood gas analysis, alanine amino transferase, and lactic acid dosages were assayed 5 h after surgery. Liver mitochondria were isolated for in vitro functional characterization, including mitochondrial respiratory parameters, oxidative phosphorylation efficiency, oxi-radical production, membrane potential, and cytochrome c oxidase activity and content. Liver interleukin 1β (IL-1β) and tumor necrosis α mRNA levels were determined. Septic shock induced a severe hypotension occurring 180 min after CLP in association with a metabolic acidosis, an increase in plasma alanine amino transferase, liver IL-1β gene expression, and mitochondrial reactive oxygen species production. The rates of mitochondrial oxygen consumption and the activity and content of cytochrome c oxidase were significantly decreased while no alterations in the oxidative phosphorylation efficiency and inner membrane integrity were found. These results show that contrary to what was expected, liver mitochondria felt to adjust their oxidative phosphorylation efficiency in response to the decrease in the mitochondrial oxidative activity induced by CLP. This loss of mitochondrial bioenergetics plasticity might be related to mitochondrial oxidative stress and liver cytokines production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    Article  CAS  PubMed  Google Scholar 

  2. Bateman RM, Sharpe MD, Goldman D, Lidington D, Elis CG (2008) Inhibiting nitric oxide overproduction during hypotensive sepsis increases local oxygen consumption in rat skeletal muscle. Crit Care Med 36:225–231

    Article  CAS  PubMed  Google Scholar 

  3. Boczkowski J, Lisdero CL, Lanone S, Samb A, Carreras MC, Boveris A, Aubier M, Poderoso JJ (1999) Endogenous peroxynitrite mediates mitochondrial dysfunction in rat diaphragm during endotoxemia. FASEB J 13:1637–1647

    CAS  PubMed  Google Scholar 

  4. Chen HW, Hsu C, Lu TS, Wang SJ, Yang RC (2003) Heat Shock pretreatment prevents cardiac mitochondrial dysfunction during sepsis. Shock 20:274–279

    Article  PubMed  Google Scholar 

  5. Clerc P, Rigoulet M, Leverve X, Fontaine E (2007) Nitric oxide increases oxidative phosphorylation efficiency. J Bioenerg Biomembr 39:158–166

    Article  CAS  PubMed  Google Scholar 

  6. Crouser ED (2004) Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 4:729–741

    Article  CAS  PubMed  Google Scholar 

  7. Crouser ED, Julian MW, Blaho DV, Pfeiffer DR (2002) Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med 30:276–284

    Article  CAS  PubMed  Google Scholar 

  8. Crouser ED, Julian MW, Huff JE, Struck J, Cook CH (2006) Carbamoyl phosphate synthase-1: a marker of mitochondrial damage and depletion in the liver during sepsis. Crit Care Med 34:2439–2446

    Article  CAS  PubMed  Google Scholar 

  9. Dare AJ, Phillips AR, Hickey AJ, Mittal A, Loveday B, Thompson N, Windsor JA (2009) A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic Biol Med 47:1517–1525

    Article  CAS  PubMed  Google Scholar 

  10. Desai VS, Weil MH, Tang W, Yang G, Bisera J (1993) Gastric intramural PCO2 during peritonitis and shock. Chest 104:1254–1258

    Article  CAS  PubMed  Google Scholar 

  11. Ertel W, Kremer JP, Kenney J, Steckholzer U, Jarrar D, Trentz O, Schildberg FW (1995) Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood 85:1341–1347

    CAS  PubMed  Google Scholar 

  12. Ertel W, Morrison MH, Wang P, Ba ZF, Ayala A, Chaudry IH (1991) The complex pattern of cytokines in sepsis. Association between prostaglandins, cachectin and interleukins. Ann Surg 214:141–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Eyenga P, Lhuillier F, Morel J, Roussel D, Sibille B, Letexier D, Cespuglio R, Duchamp C, Goudable J, Bricca G, Viale JP (2010) Time course of liver nitric oxide concentration in early septic shock by cecal ligation and puncture in rats. Nitric Oxide 23:194–198

    Article  CAS  PubMed  Google Scholar 

  14. Groen AK, Wanders RJA, Westerhoff HV, van der Meer R, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257:2754–2757

    CAS  PubMed  Google Scholar 

  15. Hyde SR, Stith RD, McCallum RE (1990) Mortality and bacteriology of sepsis following cecal ligation and puncture in aged mice. Infect Immun 58:619–624

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Kozlov AV, Staniek K, Haindl S, Piskernik C, Öhlinger W, Gille L, Nohl H, Bahrami S, Redl H (2006) Different effects of endotoxic shock on the respiratory function of liver and heart mitochondria in rats. Am J Physiol 290:G543–G549

    CAS  Google Scholar 

  17. Levy RJ, Deutschman CS (2007) Cytochrome c oxidase dysfunction in sepsis. Crit Care Med 35:S468–S475

    Article  CAS  PubMed  Google Scholar 

  18. Lowes DA, Thottakam BMV, Webster NR, Murphy MP, Galley HF (2008) The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Rad Biol Med 45:1559–1565

    Article  CAS  PubMed  Google Scholar 

  19. Lowes DA, Webster NR, Murphy MP, Galley HF (2013) Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Brit J Anaesth 110:472–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mela L, Bacalzo LV Jr, Miller LD (1971) Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am J Physiol 220:571–577

    CAS  PubMed  Google Scholar 

  21. Miller I, Gemeiner M, Gesslbauer B, Kungl A, Piskernik C, Haindl S, Nürnberger S, Bahrami S, Redl H, Kozlov AV (2006) Proteome analysis of rat liver mitochondria reveals a possible compensatory response to endotoxic shock. FEBS Lett 580:1257–1262

    Article  CAS  PubMed  Google Scholar 

  22. Nogueira V, Walter L, Avéret N, Fontaine E, Rigoulet M, Leverve XM (2002) Thyroid status is a key regulator of both flux and efficiency of oxidative phosphorylation in rat hepatocytes. J Bioenerg Biomembr 34:55–66

    Article  CAS  PubMed  Google Scholar 

  23. Picard M, Ritchie D, Wright KJ, Romestaing C, Thomas MM, Rowan SL, Taivassalo T, Hepple RT (2010) Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 9:1032–1046

    Article  CAS  PubMed  Google Scholar 

  24. Piel DA, Gruber PJ, Weinheimer CJ, Courtois MR, Robertson CM, Coopersmith CM, Deutschman CS, Levy RJ (2007) Mitochondrial resuscitation with exogenous cytochrome c in the septic heart. Crit Care Med 35:2120–2127

    Article  CAS  PubMed  Google Scholar 

  25. Piquet MA, Nogueira V, Devin A, Sibille B, Filippi C, Fontaine E, Roulet M, Rigoulet M, Leverve XM (2000) Chronic ethanol ingestion increases efficiency of oxidative phosphorylation in rat liver mitochondria. FEBS Lett 468:239–242

    Article  CAS  PubMed  Google Scholar 

  26. Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care 10:228

    Article  PubMed Central  PubMed  Google Scholar 

  27. Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95

    Article  CAS  PubMed  Google Scholar 

  28. Remick DG, Newcomb DE, Bolgos GL, Call DR (2000) Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock 13:110–116

    Article  CAS  PubMed  Google Scholar 

  29. Rey B, Roussel D, Teulier L, Eyenga P, Degletagne C, Belouze M, Duchamp C (2010) Functional argument for the existence of an avian nitric oxide synthase in muscle mitochondria: effect of cold acclimation. FEBS Lett 585:173–177

    Article  PubMed  Google Scholar 

  30. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA (2009) Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc 4:31–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rivers EP, Kruse JA, Jacobsen G, Shah K, Loomba M, Otero R, Childs EW (2007) The influence of early hemodynamic optimization on biomarker patterns of severe sepsis and septic shock. Crit Care Med 35:2016–2024

    Article  PubMed  Google Scholar 

  32. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early gold-directed therapy in the treatment severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  33. Rolfe DF, Hulbert AJ, Brand MD (1994) Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. Biochim Biophys Acta 1188:405–416

    Article  PubMed  Google Scholar 

  34. Roman-Marchant O, Orellana-Jimenez CE, De Backer D, Melot C, Vincent JL (2004) Septic shock of early or late onset: does it matter? Chest 126:173–178

    Article  PubMed  Google Scholar 

  35. Romestaing C, Piquet MA, Letexier D, Rey B, Mourier A, Servais S, Belouze M, Rouleau V, Dautresme M, Ollivier I, Favier R, Rigoulet M, Duchamp C, Sibille B (2008) Mitochondrial adaptations to steatohepatitis induced by a methionine- and choline-deficient diet. Am J Physiol 294:E110–E119

    CAS  Google Scholar 

  36. Rossignol R, Letellier T, Malgat M, Rocher C, Mazat JP (2000) Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J 347:45–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sang H, Wallis GL, Stewart CA, Kotake Y (1999) Expression of cytokines and activation of transcription factors in lipopolysaccharide-administrated rats and their inhibition by Phenyl N-tert-butylnitrone (PBN). Arch Biochem Biophys 363:341–348

    Article  CAS  PubMed  Google Scholar 

  38. Scheiermann P, Hoegl S, Revermann M, Ahluwalia D, Zander J, Boost KA, Nguyen T, Zwissler B, Muhl H, Hofstetter C (2009) Cecal Ligation and Incision acute onset model of severe sepsis in rat. J Surg Res 151:132–137

    Article  PubMed  Google Scholar 

  39. Singleton KD, Wischmeyer PE (2003) Distance of cecum ligated influences mortality, tumor necrosis factor-alpha and interleukin-6 expression following cecal ligation and puncture in the rat. Eur Surg Res 35:486–491

    Article  CAS  PubMed  Google Scholar 

  40. Tang W, Pakula JL, Weil MH, Noc M, Fukui M, Bisera J (1996) Adrenergic vasopressor agents and mechanical ventilation for the treatment of experimental septic shock. Crit Care Med 24:125–130

    Article  CAS  PubMed  Google Scholar 

  41. Teulier L, Rouanet JL, Letexier D, Romestaing C, Belouze M, Rey B, Duchamp C, Roussel D (2010) Cold-acclimation-induced non-shivering thermogenesis in birds is associated with upregulation of avian UCP but not with innate uncoupling or altered ATP efficiency. J Exp Biol 213:2476–2482

    Article  CAS  PubMed  Google Scholar 

  42. Villa P, Sartor G, Angelini M, Sironi M, Conni M, Gnocchi P, Isetta AM, Grau G, Buurman W, van Tits LJ, Ghezzi P (1995) Pattern of cytokines and pharmacomodulation in sepsis induced by cecal ligation and puncture compared with that induced by endotoxin. Clin Diagn Lab Immunol 2:549–553

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Wang P, Ba ZF, Chaudry IH (1995) Hepatocellular dysfunction occurs earlier than the onset of hyperdynamic circulation during sepsis. Shock 3:21–26

    Article  CAS  PubMed  Google Scholar 

  44. Wang P, Chaudry IH (1996) Mechanism of hepatocellular dysfunction during hyperdynamic sepsis. Am J Physiol 270:R927–R938

    CAS  PubMed  Google Scholar 

  45. Xiao H, Siddiqui J, Remick DG (2006) Mechanisms of mortality in early and late sepsis. Infect Immun 74:5227–5235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Xingjun L, Daolin J, Zuojun L (2011) The beneficial effect of direct peritoneal resuscitation on septic shock in rats. J Biomed Biotechnol 2011:1–7

    Google Scholar 

  47. Yang S, Koo DJ, Chaudry IH, Wang P (2001) Glycine attenuates hepatocellular depression during early sepsis and reduces sepsis-induced mortality. Crit Care Med 29:1201–1206

    Article  CAS  PubMed  Google Scholar 

  48. Yang Q, Mattick JSA, Orman MA, Nguyen TT, Ierapetritou MG, Berthiaume F, Androulakis IP (2012) Dynamics of hepatic gene expression profile in a rat cecal ligation and puncture model. J Surg Res 176:583–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Yi X, Kim K, Yuan W, Xu L, Kim HS, Homeister JW, Key NS, Maeda N (2009) Mice with heterozygous deficiency of lipoic acid synthase have an increased sensitivity to lipopolysaccharide-induced tissue injury. J Leukoc Biol 85:146–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zapelini PH, Rezin GT, Cardoso MR, Ritter C, Klamt F, Moreira JC, Streck EL, Dal-Pizzol F (2008) Antioxidant treatment reverses mitochondrial dysfunction in a sepsis animal model. Mitochondrion 8:211–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was funded by Equipe d'Accueil EA 4174, Université Claude Bernard Lyon 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Paul Viale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyenga, P., Roussel, D., Morel, J. et al. Early septic shock induces loss of oxidative phosphorylation yield plasticity in liver mitochondria. J Physiol Biochem 70, 285–296 (2014). https://doi.org/10.1007/s13105-013-0280-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-013-0280-5

Keywords

Navigation