Skip to main content
Log in

Wfs1 mutation makes mice sensitive to insulin-like effect of acute valproic acid and resistant to streptozocin

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Valproic acid (VLP) is a widely used anticonvulsant and mood-stabilizing drug that relieves the endoplasmic reticulum (ER) stress response, a pathogenetic process related to diabetes. The aim of the present study was to evaluate whether acute valproic acid is able to interfere with glucose intolerance in two different diabetes models: The first model was a Wfs1 mutant mouse with an elevated ER stress response and the second model a streptozocin-induced diabetic mouse. VLP (300 mg/kg, i.p.) was administered to Wfs1 knockout (KO) mice and glucose tolerance test was performed 15 min later. VLP did not have an effect on the course of the glucose tolerance test in wild-type mice, while it did normalize the glucose intolerance in Wfs1 knockout mice. Acute valproic acid also lowered the blood glucose levels in streptozocin-treated mice and potentiated the effect of insulin in these mice. Thus, acute valproic acid is effective in lowering blood glucose levels possibly by potentiating insulin action in both Wfs1 KO mice and in streptozocin-induced type 1 diabetic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Als TD, Dahl HA, Flint TJ, Wang AG, Vang M, Mors O, Kruse TA, Ewald H (2004) Possible evidence for a common risk locus for bipolar affective disorder and schizophrenia on chromosome 4p16 in patients from the Faroe Islands. Mol Psychiatry 9:93–98

    Article  PubMed  CAS  Google Scholar 

  2. Beaulieu JM, Gainetdinov RR, Caron MG (2009) Akt/gsk3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347

    Article  PubMed  CAS  Google Scholar 

  3. Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, Wetsel WC, Lefkowitz RJ, Gainetdinov RR, Caron MG (2008) A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132:125–136

    Article  PubMed  CAS  Google Scholar 

  4. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An akt/beta-arrestin 2/pp 2a signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273

    Article  PubMed  CAS  Google Scholar 

  5. Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, Caron MG (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an akt/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 101:5099–5104

    Article  PubMed  CAS  Google Scholar 

  6. Bowes AJ, Khan MI, Shi Y, Robertson L, Werstuck GH (2009) Valproate attenuates accelerated atherosclerosis in hyperglycemic ApoE-deficient mice: evidence in support of a role for endoplasmic reticulum stress and glycogen synthase kinase-3 in lesion development and hepatic steatosis. Am J Pathol 174:330–342

    Article  PubMed  CAS  Google Scholar 

  7. Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, Blumenthal R, Sharpe L, Kanyas K, Lerer B, Lilliston B, Smith M, Trautman K, Gilliam TC, Endicott J, Baron M (2006) Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry 11:252–260

    Article  PubMed  CAS  Google Scholar 

  8. Chuang DM (2005) The antiapoptotic actions of mood stabilizers: molecular mechanisms and therapeutic potentials. Ann NY Acad Sci 1053:195–204

    Article  PubMed  CAS  Google Scholar 

  9. Coyle JT, Duman RS (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38:157–160

    Article  PubMed  CAS  Google Scholar 

  10. Crawford J, Zielinski MA, Fisher LJ, Sutherland GR, Goldney RD (2002) Is there a relationship between Wolfram syndrome carrier status and suicide? Am J Med Genet 114:343–346

    Article  PubMed  Google Scholar 

  11. Detera-Wadleigh SD, Liu CY, Maheshwari M, Cardona I, Corona W, Akula N, Steele CJ, Badner JA, Kundu M, Kassem L, Potash JB, Gibbs R, Gershon ES, McMahon FJ (2007) Sequence variation in dock9 and heterogeneity in bipolar disorder. Psychiatr Genet 17:274–286

    Article  PubMed  Google Scholar 

  12. Dufrane D, van Steenberghe M, Guiot Y, Goebbels RM, Saliez A, Gianello P (2006) Streptozotocin-induced diabetes in large animals (pigs/primates): role of GLUT2 transporter and beta-cell plasticity. Transplantation 81:36–45

    Article  PubMed  CAS  Google Scholar 

  13. Ewald H, Degn B, Mors O, Kruse TA (1998) Support for the possible locus on chromosome 4p16 for bipolar affective disorder. Mol Psychiatry 3:442–448

    Article  PubMed  CAS  Google Scholar 

  14. Ewald H, Flint T, Kruse TA, Mors O (2002) A genome-wide scan shows significant linkage between bipolar disorder and chromosome 12q24.3 and suggestive linkage to chromosomes 1p22-21, 4p16, 6q14-22, 10q26 and 16p13.3. Mol Psychiatry 7:734–744

    Article  PubMed  CAS  Google Scholar 

  15. Evans KL, Lawson D, Meitinger T, Blackwood DH, Porteous DJ (2000) Mutational analysis of the Wolfram syndrome gene in two families with chromosome 4p-linked bipolar affective disorder. Am J Med Genet 96:158–160

    Article  PubMed  CAS  Google Scholar 

  16. Fonseca SG, Fukuma M, Lipson KL, Nguyen LX, Allen JR, Oka Y, Urano F (2005) Wfs1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells. J Biol Chem 280:39609–39615

    Article  PubMed  CAS  Google Scholar 

  17. Han S, Hagan DL, Taylor JR, Xin L, Meng W, Biller SA, Wetterau JR, Washburn WN, Whaley JM (2008) Dapagliflozin, a selective sglt2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57:1723–1729

    Article  PubMed  CAS  Google Scholar 

  18. Idris I, Donnelly R (2009) Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab 11:79–88

    Article  PubMed  CAS  Google Scholar 

  19. Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, Mueckler M, Marshall H, Donis-Keller H, Crock P, Rogers D, Mikuni M, Kumashiro H, Higashi K, Sobue G, Oka Y, Permutt MA (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–148

    Article  PubMed  CAS  Google Scholar 

  20. Ishihara H, Takeda S, Tamura A, Takahashi R, Yamaguchi S, Takei D, Yamada T, Inoue H, Soga H, Katagiri H, Tanizawa Y, Oka Y (2004) Disruption of the wfs1 gene in mice causes progressive beta-cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum Mol Genet 13:1159–1170

    Article  PubMed  CAS  Google Scholar 

  21. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102

    Article  PubMed  CAS  Google Scholar 

  22. Kakiuchi C, Ishigaki S, Oslowski CM, Fonseca SG, Kato T, Urano F (2009) Valproate, a mood stabilizer, induces WFS1 expression and modulates its interaction with ER stress protein grp94. PLoS ONE 4:e4134

    Article  PubMed  Google Scholar 

  23. Kakiuchi C, Ishiwata M, Hayashi A, Kato T (2006) XBP1 induces WFS1 through an endoplasmic reticulum stress response element-like motif in SH-SY5Y cells. J Neurochem 97:545–555

    Article  PubMed  CAS  Google Scholar 

  24. Kakiuchi C, Ishiwata M, Umekage T, Tochigi M, Kohda K, Sasaki T, Kato T (2004) Association of the XBP1-116C/G polymorphism with schizophrenia in the Japanese population. Psychiatry Clin Neurosci 58:438–440

    Article  PubMed  CAS  Google Scholar 

  25. Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I, Tsujita T, Okazaki Y, Nanko S, Kunugi H, Sasaki T, Kato T (2003) Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 35:171–175

    Article  PubMed  CAS  Google Scholar 

  26. Kato T (2001) DNA polymorphisms and bipolar disorder. Am J Psychiatry 158:1169–1170

    Article  PubMed  CAS  Google Scholar 

  27. Kato T (2008) Molecular neurobiology of bipolar disorder: a disease of 'mood-stabilizing neurons'? Trends Neurosci 31:495–503

    Article  PubMed  CAS  Google Scholar 

  28. Kim AJ, Shi Y, Austin RC, Werstuck GH (2005) Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 118:89–99

    Article  PubMed  CAS  Google Scholar 

  29. Koks S, Soomets U, Paya-Cano JL, Fernandes C, Luuk H, Plaas M, Terasmaa A, Tillmann V, Noormets K, Vasar E, Schalkwyk LC (2009) Wfs1 gene deletion causes growth retardation in mice and interferes with the growth hormone pathway. Physiol Genomics 37:249–259

    Article  PubMed  CAS  Google Scholar 

  30. Landmark CJ (2007) Targets for antiepileptic drugs in the synapse. Med Sci Monit 13:RA1-7

    PubMed  Google Scholar 

  31. Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, Wiltshire T, Saijo K, Glass CK, Hume DA, Kellie S, Sweet MJ (2008) Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res 4:5

    Article  PubMed  Google Scholar 

  32. Luuk H, Plaas M, Raud S, Innos J, Sutt S, Lasner H, Abramov U, Kurrikoff K, Koks S, Vasar E (2009) Wfs1-deficient mice display impaired behavioural adaptation in stressful environment. Behav Brain Res 198:334–345

    Article  PubMed  CAS  Google Scholar 

  33. Manji HK, Zarate CA (2002) Molecular and cellular mechanisms underlying mood stabilization in bipolar disorder: implications for the development of improved therapeutics. Mol Psychiatry 7(Suppl 1):S1–S7

    Article  PubMed  CAS  Google Scholar 

  34. Martorell L, Zaera MG, Valero J, Serrano D, Figuera L, Joven J, Labad A, Vilella E, Nunes V (2003) The Wfs1 (Wolfram syndrome 1) is not a major susceptibility gene for the development of psychiatric disorders. Psychiatr Genet 13:29–32

    Article  PubMed  Google Scholar 

  35. Matto V, Terasmaa A, Vasar E, Koks S (2011) Impaired striatal dopamine output of homozygous Wfs1 mutant mice in response to [K(+)] challenge. J Physiol Biochem 67:53–60

    Article  PubMed  CAS  Google Scholar 

  36. Ohtsuki T, Ishiguro H, Yoshikawa T, Arinami T (2000) Wfs1 gene mutation search in depressive patients: detection of five missense polymorphisms but no association with depression or bipolar affective disorder. J Affect Disord 58:11–17

    Article  PubMed  CAS  Google Scholar 

  37. Pujalte D, Claeysen S, Dietz S, Chapal J, Hillaire-Buys D, Petit P (2000) Inhibition of glucose-induced insulin secretion by a peripheral-type benzodiazepine receptor ligand (pk11195). Naunyn Schmiedeberg’s Arch Pharmacol 362:46–51

    CAS  Google Scholar 

  38. So J, Warsh JJ, Li PP (2007) Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-i disorder. Biol Psychiatry 62:141–147

    Article  PubMed  CAS  Google Scholar 

  39. Strom TM, Hortnagel K, Hofmann S, Gekeler F, Scharfe C, Rabl W, Gerbitz KD, Meitinger T (1998) Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet 7:2021–2028

    Article  PubMed  CAS  Google Scholar 

  40. Swift M, Swift RG (2000) Psychiatric disorders and mutations at the Wolfram syndrome locus. Biol Psychiatry 47:787–793

    Article  PubMed  CAS  Google Scholar 

  41. Swift RG, Perkins DO, Chase CL, Sadler DB, Swift M (1991) Psychiatric disorders in 36 families with Wolfram syndrome. Am J Psychiatry 148:775–779

    PubMed  CAS  Google Scholar 

  42. Swift RG, Sadler DB, Swift M (1990) Psychiatric findings in Wolfram syndrome homozygotes. Lancet 336:667–669

    Article  PubMed  CAS  Google Scholar 

  43. Thurston JH, Carroll JE, Hauhart RE, Schiro JA (1985) A single therapeutic dose of valproate affects liver carbohydrate, fat, adenylate, amino acid, coenzyme a, and carnitine metabolism in infant mice: possible clinical significance. Life Sci 36:1643–1651

    Article  PubMed  CAS  Google Scholar 

  44. Torres R, Leroy E, Hu X, Katrivanou A, Gourzis P, Papachatzopoulou A, Athanassiadou A, Beratis S, Collier D, Polymeropoulos MH (2001) Mutation screening of the Wolfram syndrome gene in psychiatric patients. Mol Psychiatry 6:39–43

    Article  PubMed  CAS  Google Scholar 

  45. Turnbull DM, Bone AJ, Tames FJ, Wilson L, Baird JD, Sherratt HS (1985) The effect of valproate on blood metabolite concentrations in spontaneously diabetic, ketoacidotic, BB/E Wistar rats. Diabetes Res 2:45–48

    PubMed  CAS  Google Scholar 

  46. Turnbull DM, Dick DJ, Wilson L, Sherratt HS, Alberti KG (1986) Valproate causes metabolic disturbance in normal man. J Neurol Neurosurg Psychiatry 49:405–410

    Article  PubMed  CAS  Google Scholar 

  47. Ueda K, Kawano J, Takeda K, Yujiri T, Tanabe K, Anno T, Akiyama M, Nozaki J, Yoshinaga T, Koizumi A, Shinoda K, Oka Y, Tanizawa Y (2005) Endoplasmic reticulum stress induces Wfs1 gene expression in pancreatic beta-cells via transcriptional activation. Eur J Endocrinol 153:167–176

    Article  PubMed  CAS  Google Scholar 

  48. Verrotti A, la Torre R, Trotta D, Mohn A, Chiarelli F (2009) Valproate-induced insulin resistance and obesity in children. Horm Res 71:125–131

    Article  PubMed  CAS  Google Scholar 

  49. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW 3rd, Su AI (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10:R130

    Article  PubMed  Google Scholar 

  50. Yamada T, Ishihara H, Tamura A, Takahashi R, Yamaguchi S, Takei D, Tokita A, Satake C, Tashiro F, Katagiri H, Aburatani H, Miyazaki J, Oka Y (2006) Wfs1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells. Hum Mol Genet 15:1600–1609

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants GARFS 0062J and GARFS 8414 (AT), GARFS 7479 (SK), GARBK 7856 (US), and SF0180148s08 (TARFS0416, EV) from the Estonian Science Foundation and PARFA 08902 (VM) from the University of Tartu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Terasmaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terasmaa, A., Soomets, U., Oflijan, J. et al. Wfs1 mutation makes mice sensitive to insulin-like effect of acute valproic acid and resistant to streptozocin. J Physiol Biochem 67, 381–390 (2011). https://doi.org/10.1007/s13105-011-0088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-011-0088-0

Keywords

Navigation