Skip to main content
Log in

Nutrient regulation of enteroendocrine cellular activity linked to cholecystokinin gene expression and secretion

  • Mini Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The hormone cholecystokinin is produced by the enteroendocrine I cells in the intestine, and it plays an important role in a number of physiological processes including digestion and food intake. Recent data suggest that cholecystokinin gene expression and protein secretion are regulated by macronutrients. The mechanism involves a change in intracellular levels of cAMP and Ca+2, brought about by the activity of a number of nutrient-responsive G protein-coupled receptors, nutrient transporters, ion channels and intracellular enzymes. How these intracellular responses could lead to gene expression and protein secretion are discussed along with new directions for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams JP, Roberson ED, English JD, Selcher JC, Sweatt JD (2000) MAPK regulation of gene expression in the central nervous system. Acta Neurobiol Exp (Wars) 60:377–394

    CAS  Google Scholar 

  2. Akrouh A, Halcomb SE, Nichols CG, Sala-Rabanal M (2009) Molecular biology of K(ATP) channels and implications for health and disease. IUBMB Life 61:971–978

    Article  PubMed  CAS  Google Scholar 

  3. Andrisani OM (1999) CREB-mediated transcriptional control. Crit Rev Eukaryot Gene Expr 9:19–32

    PubMed  CAS  Google Scholar 

  4. Bernard C, Sutter A, Vinson C, Ratineau C, Chayvialle J, Cordier-Bussat M (2001) Peptones stimulate intestinal cholecystokinin gene transcription via cyclic adenosine monophosphate response element-binding factors. Endocrinology 142:721–729

    Article  PubMed  CAS  Google Scholar 

  5. Bhatt HS, Conner BP, Prasanna G, Yorio T, Easom RA (2000) Dependence of insulin secretion from permeabilized pancreatic beta-cells on the activation of Ca(2+)/calmodulin-dependent protein kinase II: a re-evaluation of inhibitor studies. Biochem Pharmacol 60:1655–1663

    Article  PubMed  CAS  Google Scholar 

  6. Blank PS, Cho MS, Vogel SS, Kaplan D, Kang A, Malley J, Zimmerberg J (1998) Submaximal responses in calcium-triggered exocytosis are explained by differences in the calcium sensitivity of individual secretory vesicles. J Gen Physiol 112:559–567

    Article  PubMed  CAS  Google Scholar 

  7. Brown EM (2007) The calcium-sensing receptor: physiology, pathophysiology and CaR-based therapeutics. Subcell Biochem 45:139–167

    Article  PubMed  CAS  Google Scholar 

  8. Chaikomin R, Wu KL, Doran S, Meyer JH, Jones KL, Feinle-Bisset C, Horowitz M, Rayner CK (2008) Effects of mid-jejunal compared to duodenal glucose infusion on peptide hormone release and appetite in healthy men. Regul Pept 150:38–42

    Article  PubMed  CAS  Google Scholar 

  9. Chang CH, Chey WY, Chang TM (2000) Cellular mechanism of sodium oleate-stimulated secretion of cholecystokinin and secretin. Am J Physiol Gastrointest Liver Physiol 279:G295–G303

    PubMed  CAS  Google Scholar 

  10. Chang CH, Chey WY, Sun Q, Leiter A, Chang TM (1994) Characterization of the release of cholecystokinin from a murine neuroendocrine tumor cell line, STC-1. Biochim Biophys Acta 1221:339–347

    Article  PubMed  CAS  Google Scholar 

  11. Cheng X, Ji Z, Tsalkova T, Mei F (2008) Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai) 40:651–662

    Article  CAS  Google Scholar 

  12. Choi S, Lee M, Shiu AL, Yo SJ, Halldén G, Aponte GW (2007) GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells. Am J Physiol Gastrointest Liver Physiol 292:G1366–G1375

    Article  PubMed  CAS  Google Scholar 

  13. Conigrave A, Brown E (2006) Taste receptors in the gastrointestinal tract II. L-amino acid sensing by calcium-sensing receptors: implications for GI physiology. Am J Physiol Gastrointest Liver Physiol 291:G753–G761

    Article  PubMed  CAS  Google Scholar 

  14. Covington DK, Briscoe CA, Brown AJ, Jayawickreme CK (2006) The G-protein-coupled receptor 40 family (GPR40-GPR43) and its role in nutrient sensing. Biochem Soc Trans 34:770–773

    Article  PubMed  CAS  Google Scholar 

  15. Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117:13–23

    Article  PubMed  CAS  Google Scholar 

  16. Darcel NP, Liou AP, Tomé D, Raybould HE (2005) Activation of vagal afferents in the rat duodenum by protein digests requires PepT1. J Nutr 135:1491–1495

    PubMed  CAS  Google Scholar 

  17. Deschenes RJ, Lorenz LJ, Haun RS, Roos BA, Collier KJ, Dixon JE (1984) Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc Natl Acad Sci USA 81:726–730

    Article  PubMed  CAS  Google Scholar 

  18. Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP (2005) Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33:302–305

    Article  PubMed  CAS  Google Scholar 

  19. Dyer J, Vayro S, King TP, Shirazi-Beechey SP (2003) Glucose sensing in the intestinal epithelium. Eur J Biochem 270:3377–3388

    Article  PubMed  CAS  Google Scholar 

  20. Friedman J, Schneider BS, Powell D (1985) Differential expression of the mouse cholecystokinin gene during brain and gut development. Proc Natl Acad Sci USA 82:5593–5597

    Article  PubMed  CAS  Google Scholar 

  21. Gevrey JC, Cordier-Bussat M, Némoz-Gaillard E, Chayvialle JA, Abello J (2002) Co-requirement of cyclic AMP- and calcium-dependent protein kinases for transcriptional activation of cholecystokinin gene by protein hydrolysates. J Biol Chem 277:22407–22413

    Article  PubMed  CAS  Google Scholar 

  22. Hand KV, Bruen CM, Halloran FO, Giblin L, Green BD (2010) Acute and chronic effects of dietary fatty acids (FAs) on cholecystokinin (CCK) expression, storage and secretion in enteroendocrine STC-1 cells. Mol Nutr Food Res. doi:10.1002/mnfr.200900343

    PubMed  Google Scholar 

  23. Hansen TV (2001) Cholecystokinin gene transcription: promoter elements, transcription factors and signaling pathways. Peptides 22:1201–1211

    Article  PubMed  CAS  Google Scholar 

  24. Hira T, Nakajima S, Eto Y, Hara H (2008) Calcium-sensing receptor mediates phenylalanine-induced cholecystokinin secretion in enteroendocrine STC-1 cells. FEBS J 275:4620–4626

    Article  PubMed  CAS  Google Scholar 

  25. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94

    Article  PubMed  CAS  Google Scholar 

  26. Hirsh AJ, Cheeseman CI (1998) Cholecystokinin decreases intestinal hexose absorption by a parallel reduction in SGLT1 abundance in the brush-border membrane. J Biol Chem 273:14545–14549

    Article  PubMed  CAS  Google Scholar 

  27. Ichimura A, Hirasawa A, Hara T, Tsujimoto G (2009) Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglandins Other Lipid Mediat 89:82–88

    Article  PubMed  CAS  Google Scholar 

  28. Illario M, Cavallo AL, Bayer KU, Di Matola T, Fenzi G, Rossi G, Vitale M (2003) Calcium/calmodulin-dependent protein kinase II binds to Raf-1 and modulates integrin-stimulated ERK activation. J Biol Chem 278:45101–45108

    Article  PubMed  CAS  Google Scholar 

  29. Ivy AC, Oldberg E (1928) A hormone mechanism for gallbladder contraction and evaluation. Am J Physiol 65:599–613

    Google Scholar 

  30. Konturek SJ, Radecki T, Thor P, Dembinski A (1973) Release of cholecystokinin by amino acids. Proc Soc Exp Biol Med 143:305–309

    PubMed  CAS  Google Scholar 

  31. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281:23589–23597

    Article  PubMed  CAS  Google Scholar 

  32. Liddle RA (1994) Regulation of cholecystokinin synthesis and secretion in rat intestine. J Nutr 124:1308S–1314S

    PubMed  CAS  Google Scholar 

  33. Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA (1985) Cholecystokinin bioactivity in human plasma: molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest 75:1144–1152

    Article  PubMed  CAS  Google Scholar 

  34. Liddle RA, Misukonis MA, Pacy L, Balber AE (1992) Cholecystokinin cells purified by fluorescence-activated cell sorting respond to monitor peptide with an increase in intracellular calcium. Proc Natl Acad Sci USA 89:5147–5151

    Article  PubMed  CAS  Google Scholar 

  35. Maljaars J, Romeyn EA, Haddeman E, Peters HP, Masclee AA (2009) Effect of fat saturation on satiety, hormone release, and food intake. Am J Clin Nutr 89:1019–1024

    Article  PubMed  CAS  Google Scholar 

  36. Mangel AW, Prpic V, Scott L, Liddle RA (1994) Inhibitors of ATP-sensitive potassium channels stimulate intestinal cholecystokinin secretion. Peptides 15:1565–1566

    Article  PubMed  CAS  Google Scholar 

  37. Mangel AW, Snow ND, Misukonis MA, Basavappa S, Middleton JP, Fitz JG, Liddle RA (1993) Calcium-dependent regulation of cholecystokinin secretion and potassium currents in STC-1 cells. Am J Physiol 264:G1031–G1036

    PubMed  CAS  Google Scholar 

  38. Matsumura K, Miki T, Jhomori T, Gonoi T, Seino S (2005) Possible role of PEPT1 in gastrointestinal hormone secretion. Biochem Biophys Res Commun 336:1028–1032

    Article  PubMed  CAS  Google Scholar 

  39. McCaughey SA (2008) The taste of sugars. Neurosci Biobehav Rev 32:1024–1043

    Article  PubMed  CAS  Google Scholar 

  40. Moran TH, Kinzig KP (2004) Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol 286:G183–G188

    Article  PubMed  CAS  Google Scholar 

  41. Némoz-Gaillard E, Bernard C, Abello J, Cordier-Bussat M, Chayvialle JA, Cuber JC (1998) Regulation of cholecystokinin secretion by peptones and peptidomimetic antibiotics in STC-1 cells. Endocrinology 139:932–938

    Article  PubMed  Google Scholar 

  42. Neri LM, Borgatti P, Capitani S, Martelli AM (2002) Protein kinase C isoforms and lipid second messengers: a critical nuclear partnership? Histol Histopathol 17:1311–1316

    PubMed  CAS  Google Scholar 

  43. Nishi T, Hara H, Tomita F (2003) The soybean beta-conglycinin beta 51-63 fragment suppresses appetite by stimulating cholecystokinin release in rats. J Nutr 133:2537–2542

    PubMed  CAS  Google Scholar 

  44. Pilichiewicz AN, Chaikomin R, Brennan IM, Wishart JM, Rayner CK, Jones KL, Smout AJ, Horowitz M, Feinle-Bisset C (2007) Load-dependent effects of duodenal glucose on glycemia, gastrointestinal hormones, antropyloroduodenal motility, and energy intake in healthy men. Am J Physiol Endocrinol Metab 293:E743–E753

    Article  PubMed  CAS  Google Scholar 

  45. Raybould HE (1999) Nutrient tasting and signaling mechanisms in the gut I. Sensing of lipid by the intestinal mucosa. Am J Physiol 277:G751–G755

    PubMed  CAS  Google Scholar 

  46. Raybould HE (2008) Nutrient sensing in the gastrointestinal tract: possible role for nutrient transporters. J Physiol Biochem 64:349–356

    Article  PubMed  CAS  Google Scholar 

  47. Rey O, Young SH, Papazyan R, Shapiro MS, Rozengurt E (2006) Requirement of the TRPC1 cation channel in the generation of transient Ca 2+ oscillations by the calcium-sensing receptor. J Biol Chem 281:38730–38737

    Article  PubMed  CAS  Google Scholar 

  48. Rey O, Young SH, Yuan J, Slice L, Rozengurt E (2005) Amino acid-stimulated Ca2+ oscillations produced by the Ca2 + -sensing receptor are mediated by a phospholipase C/inositol 1, 4, 5-trisphosphate-independent pathway that requires G12, Rho, filamin-A, and the actin cytoskeleton. J Biol Chem 280:22875–22882

    Article  PubMed  CAS  Google Scholar 

  49. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalosa MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109:95–104

    Article  PubMed  CAS  Google Scholar 

  50. Rozengurt E, Sternini C (2007) Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol 7:557–562

    Article  PubMed  CAS  Google Scholar 

  51. Schneeman BO (2002) Gastrointestinal physiology and functions. Br J Nutr 88:S159–S163

    Article  PubMed  CAS  Google Scholar 

  52. Stojilkovic SS (2005) Ca2+-regulated exocytosis and SNARE function. Trends Endocrinol Metab 16:81–83

    Article  PubMed  CAS  Google Scholar 

  53. Swulius MT, Waxham MN (2008) Ca (2+)/calmodulin-dependent protein kinases. Cell Mol Life Sci 65:2637–2657

    Article  PubMed  CAS  Google Scholar 

  54. Szaszák M, Christian F, Rosenthal W, Klussmann E (2008) Compartmentalized cAMP signalling in regulated exocytic processes in non-neuronal cells. Cell Signal 20:590–601

    Article  PubMed  CAS  Google Scholar 

  55. Takahashi Y, Kato K, Hayashizaki Y, Wakabayashi T, Ohtsuka E, Matsuki S, Ikehara M, Matsubara K (1985) Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc Natl Acad Sci USA 82:1931–1935

    Article  PubMed  CAS  Google Scholar 

  56. Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G (2008) Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch Pharmacol 377:523–527

    Article  PubMed  CAS  Google Scholar 

  57. Thwaites DT, Anderson CM (2007) H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol 92:603–619

    Article  PubMed  CAS  Google Scholar 

  58. Veldhorst M, Smeets A, Soenen S, Hochstenbach-Waelen A, Hursel R, Diepvens K, Lejeune M, Luscombe-Marsh N, Westerterp-Plantenga M (2008) Protein-induced satiety: effects and mechanisms of different proteins. Physiol Behav 94:300–307

    Article  PubMed  CAS  Google Scholar 

  59. West SD, Mercer DW (2004) Cholecystokinin-induced gastroprotection: a review of current protective mechanisms. Dig Dis Sci 49:361–369

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Nilaweera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilaweera, K.N., Giblin, L. & Ross, R.P. Nutrient regulation of enteroendocrine cellular activity linked to cholecystokinin gene expression and secretion. J Physiol Biochem 66, 85–92 (2010). https://doi.org/10.1007/s13105-010-0012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-010-0012-z

Keywords

Navigation