Skip to main content

Amino Acids and Hormone Secretion in Pigs

  • Chapter
  • First Online:
Nutritional and Physiological Functions of Amino Acids in Pigs

Abstract

Amino acids have been implicated in the regulation of hormone synthesis and secretion (Kuhara et al. 1991; Newsholme et al. 2005; Zhen et al. 2012). Amino acids stimulate or inhibit the release of some pituitary, pancreatic, and gastrointestinal hormones by oral or intravenous administration. For example, tyrosine (or phenylalanine) is the precursor for the synthesis of epinephrine, norepinephrine, and thyroid hormones. Arginine stimulates the secretion of insulin, growth hormone (GH), prolactin, glucagon, and placental lactogen (Flynn et al. 2002). Glutamine and leucine also increase insulin release from the pancreatic E-cells (Newsholme et al. 2005). Amino acids also induce the secretion of GI hormones such as glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK), and ghrelin (Nakamura et al. 2011). The mechanism of hormones release induced by amino acids may involve membrane depolarization and certain receptors and transporters. It is becoming increasingly recognized that gastrointestinal chemosensing involves additional mechanisms. In this chapter, the regulations and mechanisms of amino acids on GH–IGF-I axis hormones release, pancreatic secretion, and gastrointestinal hormone secretion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar E, Tena-Sempere M, Pinilla L (2005) Role of excitatory amino acids in the control of growth hormone secretion. Endocrine 28:295–301

    Article  PubMed  CAS  Google Scholar 

  • Bajoria R, Sooranna SR, Ward S, Hancock M (2002) Placenta as a link between amino acids, insulin-IGF axis, and low birth weight: evidence from twin studies. J Clin Endocrinol Metab 87:308–315

    Article  PubMed  CAS  Google Scholar 

  • Barb CR, Campbell RM, Armstrong JD, Cox NM (1996) Aspartate and glutamate modulation of growth hormone secretion in the pig: possible site of action. Domest Anim Endocrinol 13(1):81–90

    Article  PubMed  CAS  Google Scholar 

  • Bequette BJ (2003) Amino acid metabolism in animals: an overview. In: D’Mello JPF (ed) Amino acids in animal nutrition. CABI Publishing, Wallingford, pp 87–101

    Chapter  Google Scholar 

  • Blachier F, Leclercq-Meyer V, Marchand J, Woussen-Colle MC, Mathias PC, Sener A, Malaisse WJ (1989a) Stimulus-secretion coupling of arginine-induced insulin release. Functional response of islets to L-arginine and L-ornithine. Biochim Biophys Acta 1013:144–151

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Mourtada A, Sener A, Malaisse WJ (1989b) Stimulus-secretion coupling of arginine-induced insulin release. Uptake of metabolized and nonmetabolized cationic amino acids by pancreatic islets. Endocrinology 124(1):134–141

    Article  PubMed  CAS  Google Scholar 

  • Brameld JM, Gilmour RS, Buttery PJ (1999) Glucose and amino acids interact with hormones to control expression of insulin-like growth factor-1 and growth hormone receptor mRNA in cultured pig hepatocytes. J Nutr 129:1298–1306

    PubMed  CAS  Google Scholar 

  • Cancela JM, Petersen OH (2002) Regulation of intracellular Ca2+ stores by multiple Ca2+-releasing messengers. Diabetes 51(3):S349–S357

    Article  PubMed  CAS  Google Scholar 

  • Casanueva FF, Diequez C (2004) Ghrelin a new hormone implicated in the regulation of growth hormone secretion and body energy homeostasis. Growth Genet Horm 20:1–8

    Google Scholar 

  • Charlton MR, Adey DB, Nair KS (1996) Evidence for a catabolic role of glucagon during an amino acid load. J Clin Invest 98(1):90–99

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Lee M, Shiu AL, Yo SJ, Hallden G, Aponte GW (2007) GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells. Am J Physiol Gastrointest Liver Physiol 292:G1366–G1375

    Article  PubMed  CAS  Google Scholar 

  • Cochard A, Guilhermet R, Bonneau M (1998) Plasma growth hormone (GH), insulin and amino acid responses to arginine with or without aspartic acid in pigs. Effect of the dose. Reprod Nutr Dev 38(3):331–343

    Article  PubMed  CAS  Google Scholar 

  • Copinschi G, Wegienka LC, Hane S, Forsham PH (1967) Effect of arginine on serum levels of insulin and growth hormone in obese subjects. Metabolism 16:485–491

    Article  PubMed  CAS  Google Scholar 

  • Diakogiannaki E, Gribble FM, Reimann F (2011) Nutrient detection by incretin hormone secreting cells. Physiol Behav 106(3):387–393. doi:10.1016/j.physbeh.2011.12.001

    Article  PubMed  Google Scholar 

  • Dumonteil E, Magnan C, Ritz-Laser B, Ktorza A, Meda P, Philippe J (2000) Glucose regulates proinsulin and prosomatostatin but not proglucagon messenger ribonucleic acid levels in rat pancreatic islets. Endocrinology 141:174–180

    Article  PubMed  CAS  Google Scholar 

  • Eaton RP, Schade DS (1974) Effect of clofibrate on arginine-stimulated glucagon and insulin secretion in man. Metabolism 23:445–454

    Article  PubMed  CAS  Google Scholar 

  • Efendic S, Cerasi E, Luft R (1971) Role of glucose in arginine-induced insulin release in man. Metabolism 20(6):568–579

    Article  PubMed  CAS  Google Scholar 

  • Estienne MJ, Barb CR (2002) Modulation of growth hormone, luteinizing hormone, and testosterone secretion by excitatory amino acids in boars. Reprod Biol 2(1):13–24

    PubMed  Google Scholar 

  • Estienne MJ, Harter-Dennis JM, Barb CR, Hartsock TG (1995) Luteinizing hormone and growth hormone concentrations in serum of prepubertal gilts treated with n-methyl-d, l-aspartate. Domest Anim Endocrinol 12:207–213

    Article  PubMed  CAS  Google Scholar 

  • Estienne MJ, Broughton DS, Barb CR (2000) Serum concentrations of luteinizing hormone, growth hormone, testosterone, estradiol, and leptin in boars treated with n-methyl-d, l-aspartate. J Anim Sci 78:365–370

    PubMed  CAS  Google Scholar 

  • Feldmann N, del Rio RM, Gjinovci A, Tamarit-Rodriguez J, Wollheim CB, Wiederkehr A (2011) Reduction of plasma membrane glutamate transport potentiates insulin but not glucagon secretion in pancreatic islet cells. Mol Cell Endocrinol 338(1–2):46–57

    Article  PubMed  CAS  Google Scholar 

  • Flatt PR, Barnett CR, Shibier O, Swanston-Flatt SK (1991) Direct and indirect actions of nutrients in the regulation of insulin secretion from the pancreatic β cells. Proc Nutr Soc 50(3):559–566

    Article  PubMed  CAS  Google Scholar 

  • Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  PubMed  CAS  Google Scholar 

  • Fried GM, Ogden WD, Rhea A, Greeley G, Thompson JC (1982) Pancreatic protein secretion and gastrointestinal hormone release in response to parenteral amino acids and lipid in dogs. Surgery 92(5):902–905

    PubMed  CAS  Google Scholar 

  • Gameiro A, Reimann F, Habib AM, O’Malley D, Williams L, Simpson AK, Gribble FM (2005) The neurotransmitters glycine and GABA stimulate glucagon-like peptide-1 release from the GLUTag cell line. J Physiol 569:761–772

    Article  PubMed  CAS  Google Scholar 

  • Greenfield JR, Farooqi IS, Keogh JM, Henning E, Habib AM, Blackwood A, Reimann F, Holst JJ, Gribble FM (2009) Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. Am J Clin Nutr 89:106–113

    Article  PubMed  CAS  Google Scholar 

  • Guay F, Trottier NL (2006) Muscle growth and plasma concentrations of amino acids, insulin-like growth factor-I, and insulin in growing pigs fed reduced-protein diets. J Anim Sci 84:3010–3019

    Article  PubMed  CAS  Google Scholar 

  • Henningsson R, Lundquist I (1998) Arginine-induced insulin release is decreased and glucagon increased in parallel with islet NO production. Am J Physiol Endocrinol Metab 275:E500–E506

    CAS  Google Scholar 

  • Herrmann C, Göke R, Richter G, Fehmann HC, Arnold R, Göke B (1995) Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 56:117–126

    Article  PubMed  CAS  Google Scholar 

  • Jahan-Mihan A, Luhovyy BL, El Khoury D, Anderson GH (2011) Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 3(5):574–603

    Article  PubMed  CAS  Google Scholar 

  • Katsumata M, Kawakami S, Kaji Y, Takada R, Dauncey MJ (2002) Differential regulation of porcine hepatic IGFI mRNA expression and plasma IGF-I concentration by a low lysine diet. J Nutr 132:688–692

    PubMed  CAS  Google Scholar 

  • Katsumata M, Kawakami S, Kaji Y, Takada R (2004) Circulating levels of insulin-like growth factor-1 and associated binding proteins in plasma and mRNA expression in tissues of growing pigs on a low threonine diet. Anim Sci 79:85–92

    CAS  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    PubMed  CAS  Google Scholar 

  • Knerr I, Groschl M, Rascher W, Rauh M (2003) Endocrine effects of food intake: insulin, ghrelin, and leptin responses to a single bolus of essential aminoacids in humans. Ann Nutr Metab 47:312–318

    Article  PubMed  CAS  Google Scholar 

  • Kuhara T, Ikeda S, Ohneda A, Sasaki Y (1991) Effects of intravenous infusion of 17 amino acids on the secretion of GH, glucagon, and insulin in sheep. Am J Physiol Endocrinol Metabol 260:E21–E26

    CAS  Google Scholar 

  • Layden BT, Durai V, Lowe WL Jr (2010) G-protein-coupled receptors, pancreatic islets, and diabetes. Nat Educ 3(9):13

    Google Scholar 

  • Li J, Forhead AJ, Dauncey MJ, Gilmour RS, Fowden AL (2002) Control of growth hormone receptor and insulin-like growth factor-I expression by cortisol in ovine fetal skeletal muscle. J Physiol 541:581–589

    Article  PubMed  CAS  Google Scholar 

  • Liddle RA (1994) Cholecystokinin. In: Walsh JH, Dockray GJ (eds) Gut peptides. Raven, New York, pp 175–216

    Google Scholar 

  • Lucy MC (2008) Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction. Reprod Domest Anim 43(2):S31–S39

    Article  Google Scholar 

  • Maechler P, Gjinovci A, Wollheim CB (2002) Implication of glutamate in the kinetics of insulin secretion in rat and mouse perfused pancreas. Diabetes 51(1):S99–S102

    Article  PubMed  CAS  Google Scholar 

  • Mangel AW, Prpic V, Wong H, Basavappa S, Hurst LJ, Scott L, Garman RL, Hayes JS, Sharara AI, Snow ND, Walsh JH, Liddle RA (1995) Phenylalanine-stimulated secretion of cholecystokinin is calcium dependent. Am J Physiol Gastrointest Liver Physiol 268:G90–G94

    CAS  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, McNeal CJ, Wu G (2010) Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  PubMed  CAS  Google Scholar 

  • Mersmann HJ, Smith SB (2005) Development of white adipose tissue lipid metabolism. In: Burrin DG, Mersmann HJ (eds) Biology of metabolism in growing animals. Elsevier, Oxford, pp 275–302

    Chapter  Google Scholar 

  • Miguel-Aliaga I (2012) Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans. Semin Cell Dev Biol 23(6):614–620. doi:10.1016/j.semcdb.2012.01.002

    Article  PubMed  CAS  Google Scholar 

  • Muller WA, Faloona GR, Unger RH (1971) The influence of the antecedent diet upon glucagon and insulin secretion. N Engl J Med 285(26):1450–1454

    Article  PubMed  CAS  Google Scholar 

  • Nakamura E, Hasumura M, Uneyama H, Torii K (2011) Luminal amino acid-sensing cells in gastric mucosa. Digestion 83:S13–S18

    Article  Google Scholar 

  • Nass R, Pezzoli SS, Chapman IM, Patrie J, Hintz RL, Hartman ML, Thorner MO (2002) IGF-I does not affect the net increase in GH release in response to arginine. Am J Physiol Endocrinol Metab 283:E702–E710

    PubMed  CAS  Google Scholar 

  • Newsholme P, Brennan L, Rubi B, Maechler P (2005) New insights into amino acid metabolism, beta-cell function and diabetes. Clin Sci (Lond) 108(3):185–194

    Article  CAS  Google Scholar 

  • Östenson CG, Grebing C (1985) Evidence for metabolic regulation of pancreatic glucagon secretion by l-glutamine. Acta Endocrinol 108:386–391

    PubMed  Google Scholar 

  • Pagliara AS, Stillings SN, Hover B, Martin DM, Matschinsky FM (1974) Glucose modulation of amino acid-induced glucagon and insulin release in the isolated perfused rat pancreas. J Clin Invest 54(4):819–832

    Article  PubMed  CAS  Google Scholar 

  • Quesada I, Tudurí E, Ripoll C, Nadal Á (2008) Physiology of the pancreatic α-cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol 199:5–19

    Article  PubMed  CAS  Google Scholar 

  • Raybould HE (2010) Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci 153:41–46

    Article  PubMed  CAS  Google Scholar 

  • Reimann F, Williams L, da Silva XG, Rutter GA, Gribble FM (2004) Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 47:1592–1601

    Article  PubMed  CAS  Google Scholar 

  • Reimann F, Ward PS, Gribble FM (2006) Signaling mechanisms underlying the release of glucagon-like peptide 1. Diabetes 55(2):S78–S85

    Article  CAS  Google Scholar 

  • Saleri R, Cavalli V, Tamanini C (2003) GH and nitric oxide production by pig pituitary cells in different culture conditions. Endocrine Abstr 6:P21

    Google Scholar 

  • Sener A, Blachier F, Rasschaert J, Mourtada A, Malaisse-Lagae F, Malaisse WJ (1989a) Stimulus-secretion coupling of arginine-induced insulin release: comparison with lysine-induced insulin secretion. Endocrinology 124(5):2558–2567

    Article  PubMed  CAS  Google Scholar 

  • Sener A, Lebrun P, Blachier F, Malaisse WJ (1989b) Stimulus-secretion coupling of arginine-induced insulin release. Insulinotropic action of agmatine. Biochem Pharmacol 38:327–330

    Article  PubMed  CAS  Google Scholar 

  • Smith PA, Sakura H, Coles B, Gummerson N, Proks P, Ashcroft FM (1997) Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic b-cells. J Physiol 499:625–635

    PubMed  CAS  Google Scholar 

  • Stingl H, Raffesberg W, Nowotny P, Waldhäusl W, Roden M (2002) Reduction of plasma leptin concentrations by arginine but not lipid infusion in humans. Obes Res 10:1111–1119

    Article  PubMed  CAS  Google Scholar 

  • Sugino T, Kawakita Y, Fukumori R, Hasegawa Y, Kojima M, Kangawa K, Obitsu T, Taniguchi K (2010) Effects of glucose and amino acids on ghrelin secretion in sheep. Anim Sci J 81(2):199–204

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ, Li XG, Xu HJ, Kong XF, Huang RL, Tang WJ, Shinzato I, Smith SB, Wu GY (2009) Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tena-Sempere M, Pinilla L, González LC, Aguilar E (2000) Regulation of growth hormone (GH) secretion by different glutamate receptor subtypes in the rat. Amino Acids 18:1–6

    Article  PubMed  CAS  Google Scholar 

  • Tolhurst G, Zheng Y, Parker HE, Habib AM, Reimann F, Gribble FM (2011) Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP. Endocrinology 152:405–413

    Article  PubMed  CAS  Google Scholar 

  • Tomé D, Schwarz J, Darcel N, Fromentin G (2009) Protein, amino acids, vagus nerve signaling, and the brain. Am J Clin Nutr 90(3):S838–S843

    Article  Google Scholar 

  • Vance ML, Hartman ML, Thorner MO (1992) Growth hormone and nutrition. Horm Res 38(1):S85–S88

    Article  Google Scholar 

  • Wang Y, Chandra R, Samsa LA, Gooch B, Fee BE, Cook JM, Vigna SR, Grant AO, Liddle RA (2011) Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor. Am J Physiol Gastrointest Liver Physiol 300(4):G528–G537

    Article  PubMed  CAS  Google Scholar 

  • Wiltafskya MK, Pfaffla MW, Rotha FX (2010) The effects of branched-chain amino acid interactions on growth performance, blood metabolites, enzyme kinetics and transcriptomics in weaned pigs. Br J Nutr 103:964–976

    Article  Google Scholar 

  • Winzell MS, Ahrén B (2007) G-protein-coupled receptors and islet function—implications for treatment of type 2 diabetes. Pharmacol Ther 116(3):437–448

    Article  PubMed  CAS  Google Scholar 

  • Xi G, Xu ZR, Xiao P (2002) Growth associated hormones response and fat metabolism change in finishing pigs fed with n-methyl-d, L-aspartate. Asian-Australas J Anim Sci 15(7):1026–1030

    CAS  Google Scholar 

  • Yao K, Yin YL, Chu W, Liu Z, Deng D, Li T, Huang R, Zhang J, Tan B, Wang W, Wu G (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    PubMed  CAS  Google Scholar 

  • Zhang HW, Yin JD, Li DF, Zhou X, Li XL (2007) Tryptophan enhances ghrelin expression and secretion associated with increased food intake and weight gain in weanling pigs. Domest Anim Endocrinol 33(1):47–61

    Article  PubMed  Google Scholar 

  • Zeng L, Tan B, Xiao H, Yin Y, Lu X, Fang J (2012) Amino acid sensing signaling induced by amino acid transporters. Scientia Sinca Vitae 42: 699–708.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Tan, B. et al. (2013). Amino Acids and Hormone Secretion in Pigs. In: Blachier, F., Wu, G., Yin, Y. (eds) Nutritional and Physiological Functions of Amino Acids in Pigs. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1328-8_10

Download citation

Publish with us

Policies and ethics