Skip to main content

Advertisement

Log in

Plasma Biomarkers of Inflammation Reflect Seizures and Hemorrhagic Activity of Cerebral Cavernous Malformations

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The clinical course of cerebral cavernous malformations (CCMs) is highly variable. Based on recent discoveries implicating angiogenic and inflammatory mechanisms, we hypothesized that serum biomarkers might reflect chronic or acute disease activity. This single-site prospective observational cohort study included 85 CCM patients, in whom 24 a priori chosen plasma biomarkers were quantified and analyzed in relation to established clinical and imaging parameters of disease categorization and severity. We subsequently validated the positive correlations in longitudinal follow-up of 49 subjects. Plasma levels of matrix metalloproteinase-2 and intercellular adhesion molecule 1 were significantly higher (P = 0.02 and P = 0.04, respectively, FDR corrected), and matrix metalloproteinase-9 was lower (P = 0.04, FDR corrected) in patients with seizure activity at any time in the past. Vascular endothelial growth factor and endoglin (both P = 0.04, FDR corrected) plasma levels were lower in patients who had suffered a symptomatic bleed in the prior 3 months. The hierarchical clustering analysis revealed a cluster of four plasma inflammatory cytokines (interleukin 2, interferon gamma, tumor necrosis factor alpha, and interleukin 1 beta) separating patients into what we designated “high” and “low” inflammatory states. The “high” inflammatory state was associated with seizure activity (P = 0.02) and more than one hemorrhagic event during a patient’s lifetime (P = 0.04) and with a higher rate of new hemorrhage, lesion growth, or new lesion formation (P < 0.05) during prospective follow-up. Peripheral plasma biomarkers reflect seizure and recent hemorrhagic activity in CCM patients. In addition, four clustered inflammatory biomarkers correlate with cumulative disease aggressiveness and predict future clinical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al-Shahi Salman R, Hall JM, Horne MA, Moultrie F, Josephson CB, Bhattacharya JJ, et al. Untreated clinical course of cerebral cavernous malformations: a prospective, population-based cohort study. Lancet Neurol. 2012;11(3):217–24. doi:10.1016/S1474-4422(12)70004-2.

    Article  PubMed  Google Scholar 

  2. McDonald DA, Shi C, Shenkar R, Gallione CJ, Akers AL, Li S, et al. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet. 2014;23(16):4357–70. doi:10.1093/hmg/ddu153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, et al. The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med. 2009;15(2):177–84. doi:10.1038/nm.1911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mikati AG, Khanna O, Zhang L, Girard R, Shenkar R, Guo X, et al. Vascular permeability in cerebral cavernous malformations. J Cereb Blood Flow Metab. 2015;35(10):1632–9. doi:10.1038/jcbfm.2015.98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tan H, Zhang L, Mikati AG, Girard R, Khanna O, Fam MD, et al. Quantitative susceptibility mapping in cerebral cavernous malformations: clinical correlations. AJNR Am J Neuroradiol. 2016;37(7):1209–15. doi:10.3174/ajnr.A4724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Girard R, Fam MD, Zeineddine HA, Tan H, Mikati AG, Shi C, et al. Vascular permeability and iron deposition biomarkers in longitudinal follow-up of cerebral cavernous malformations. J Neurosurg. 2017;127(1):102–10. doi:10.3171/2016.5.JNS16687.

    Article  PubMed  Google Scholar 

  7. Shi C, Shenkar R, Zeineddine HA, Girard R, Fam MD, Austin C, et al. B-cell depletion reduces the maturation of cerebral cavernous malformations in murine models. J NeuroImmune Pharmacol. 2016;11(2):369–77. doi:10.1007/s11481-016-9670-0.

    Article  PubMed  Google Scholar 

  8. Shi C, Shenkar R, Kinloch A, Henderson SG, Shaaya M, Chong AS, et al. Immune complex formation and in situ B-cell clonal expansion in human cerebral cavernous malformations. J Neuroimmunol. 2014;272(1–2):67–75. doi:10.1016/j.jneuroim.2014.04.016.

    Article  CAS  PubMed  Google Scholar 

  9. Wustehube J, Bartol A, Liebler SS, Brutsch R, Zhu Y, Felbor U, et al. Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci U S A. 2010;107(28):12640–5. doi:10.1073/pnas.1000132107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Renz M, Otten C, Faurobert E, Rudolph F, Zhu Y, Boulday G, et al. Regulation of beta1 integrin-Klf2-mediated angiogenesis by CCM proteins. Dev Cell. 2015;32(2):181–90. doi:10.1016/j.devcel.2014.12.016.

    Article  CAS  PubMed  Google Scholar 

  11. Noshiro S, Mikami T, Kataoka-Sasaki Y, Sasaki M, Ohnishi H, Ohtaki S, et al. Co-expression of tissue factor and IL-6 in immature endothelial cells of cerebral cavernous malformations. J Clin Neurosci. 2017;37:83–90. doi:10.1016/j.jocn.2016.12.023.

    Article  CAS  PubMed  Google Scholar 

  12. Choquet H, Pawlikowska L, Nelson J, McCulloch CE, Akers A, Baca B, et al. Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity. Cerebrovasc Dis. 2014;38(6):433–40. doi:10.1159/000369200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lleo A, Cavedo E, Parnetti L, Vanderstichele H, Herukka SK, Andreasen N, et al. Cerebrospinal fluid biomarkers in trials for Alzheimer and Parkinson diseases. Nat Rev Neurol. 2015;11(1):41–55. doi:10.1038/nrneurol.2014.232.

    Article  CAS  PubMed  Google Scholar 

  14. Amur S, LaVange L, Zineh I, Buckman-Garner S, Woodcock J. Biomarker qualification: toward a multiple stakeholder framework for biomarker development, regulatory acceptance, and utilization. Clin Pharmacol Ther. 2015;98(1):34–46. doi:10.1002/cpt.136.

    Article  CAS  PubMed  Google Scholar 

  15. Amur SG, Sanyal S, Chakravarty AG, Noone MH, Kaiser J, McCune S, et al. Building a roadmap to biomarker qualification: challenges and opportunities. Biomark Med. 2015;9(11):1095–105. doi:10.2217/bmm.15.90.

    Article  CAS  PubMed  Google Scholar 

  16. Girard R, Khanna O, Shenkar R, Zhang L, Wu M, Jesselson M, et al. Peripheral plasma vitamin D and non-HDL cholesterol reflect the severity of cerebral cavernous malformation disease. Biomark Med. 2016;10(3):255–64. doi:10.2217/bmm.15.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choquet H, Nelson J, Pawlikowska L, McCulloch CE, Akers A, Baca B, et al. Association of cardiovascular risk factors with disease severity in cerebral cavernous malformation type 1 subjects with the common Hispanic mutation. Cerebrovasc Dis. 2014;37(1):57–63. doi:10.1159/000356839.

    Article  PubMed  Google Scholar 

  18. Al-Shahi Salman R, Berg MJ, Morrison L, Awad IA, Angioma Alliance Scientific Advisory B. Hemorrhage from cavernous malformations of the brain: definition and reporting standards. Angioma Alliance Scientific Advisory Board. Stroke. 2008;39(12):3222–30. doi:10.1161/STROKEAHA.108.515544.

    Article  PubMed  Google Scholar 

  19. Zhou X, Fragala MS, McElhaney JE, Kuchel GA. Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr Opin Clin Nutr Metab Care. 2010;13(5):541–7. doi:10.1097/MCO.0b013e32833cf3bc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation. 2008;118(20):2047–56. doi:10.1161/CIRCULATIONAHA.108.804146.

    Article  CAS  PubMed  Google Scholar 

  21. Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F, Ottoboni L, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med. 2008;14(12):1377–83. doi:10.1038/nm.1878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rossi B, Angiari S, Zenaro E, Budui SL, Constantin G. Vascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte-endothelial interactions. J Leukoc Biol. 2011;89(4):539–56. doi:10.1189/jlb.0710432.

    Article  CAS  PubMed  Google Scholar 

  23. Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009;8(2):205–16. doi:10.1016/S1474-4422(09)70016-X.

    Article  CAS  PubMed  Google Scholar 

  24. Mizoguchi H, Yamada K. Roles of matrix metalloproteinases and their targets in epileptogenesis and seizures. Clin Psychopharmacol Neurosci. 2013;11(2):45–52. doi:10.9758/cpn.2013.11.2.45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ikonomidou C. Matrix metalloproteinases and epileptogenesis. Mol Cell Pediatr. 2014;1(1):6. doi:10.1186/s40348-014-0006-y.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bauer AT, Burgers HF, Rabie T, Marti HH. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 2010;30(4):837–48. doi:10.1038/jcbfm.2009.248.

    Article  CAS  PubMed  Google Scholar 

  27. Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, et al. Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One. 2011;6(8):e20599. doi:10.1371/journal.pone.0020599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fujimura M, Watanabe M, Shimizu H, Tominaga T. Expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) in cerebral cavernous malformations: immunohistochemical analysis of MMP-2, -9 and TIMP-2. Acta Neurochir. 2007;149(2):179–183; discussion 83. doi:10.1007/s00701-006-0929-8.

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007;27(4):697–709. doi:10.1038/sj.jcbfm.9600375.

    Article  CAS  PubMed  Google Scholar 

  30. Li YJ, Wang ZH, Zhang B, Zhe X, Wang MJ, Shi ST, et al. Disruption of the blood-brain barrier after generalized tonic-clonic seizures correlates with cerebrospinal fluid MMP-9 levels. J Neuroinflammation. 2013;10:80. doi:10.1186/1742-2094-10-80.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang R, Zeng GQ, Tong RZ, Zhou D, Hong Z. Serum matrix metalloproteinase-2: a potential biomarker for diagnosis of epilepsy. Epilepsy Res. 2016;122:114–9. doi:10.1016/j.eplepsyres.2016.02.009.

    Article  CAS  PubMed  Google Scholar 

  32. Alberts MJ, Davis JP, Graffagnino C, McClenny C, Delong D, Granger C, et al. Endoglin gene polymorphism as a risk factor for sporadic intracerebral hemorrhage. Ann Neurol. 1997;41(5):683–6. doi:10.1002/ana.410410519.

    Article  CAS  PubMed  Google Scholar 

  33. Gallione CJ, Klaus DJ, Yeh EY, Stenzel TT, Xue Y, Anthony KB, et al. Mutation and expression analysis of the endoglin gene in hereditary hemorrhagic telangiectasia reveals null alleles. Hum Mutat. 1998;11(4):286–94. doi:10.1002/(SICI)1098-1004(1998)11:4<286::AID-HUMU6>3.0.CO;2-B.

    Article  CAS  PubMed  Google Scholar 

  34. Richards-Yutz J, Grant K, Chao EC, Walther SE, Ganguly A. Update on molecular diagnosis of hereditary hemorrhagic telangiectasia. Hum Genet. 2010;128(1):61–77. doi:10.1007/s00439-010-0825-4.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu Y, Wu Q, Fass M, Xu JF, You C, Muller O, et al. In vitro characterization of the angiogenic phenotype and genotype of the endothelia derived from sporadic cerebral cavernous malformations. Neurosurgery. 2011;69(3):722–731; discussion 31-2. doi:10.1227/NEU.0b013e318219569f.

    Article  PubMed  Google Scholar 

  36. Matsuo R, Ago T, Kamouchi M, Kuroda J, Kuwashiro T, Hata J, et al. Clinical significance of plasma VEGF value in ischemic stroke—research for biomarkers in ischemic stroke (REBIOS) study. BMC Neurol. 2013;13:32. doi:10.1186/1471-2377-13-32.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Slevin M, Krupinski J, Slowik A, Kumar P, Szczudlik A, Gaffney J. Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke. Stroke. 2000;31(8):1863–70.

    Article  CAS  PubMed  Google Scholar 

  38. Jung KH, Chu K, Jeong SW, Park HK, Bae HJ, Yoon BW. Cerebral cavernous malformations with dynamic and progressive course: correlation study with vascular endothelial growth factor. Arch Neurol. 2003;60(11):1613–8. doi:10.1001/archneur.60.11.1613.

    Article  PubMed  Google Scholar 

  39. Maiuri F, Cappabianca P, Gangemi M, De Caro MB, Esposito F, Pettinato G, et al. Clinical progression and familial occurrence of cerebral cavernous angiomas: the role of angiogenic and growth factors. Neurosurg Focus. 2006;21(1):e3.

    Article  PubMed  Google Scholar 

  40. Murray PJ. The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc Natl Acad Sci U S A. 2005;102(24):8686–91. doi:10.1073/pnas.0500419102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, et al. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010;21(5):331–44. doi:10.1016/j.cytogfr.2010.09.002.

    Article  CAS  PubMed  Google Scholar 

  42. Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014;41(1):21–35. doi:10.1016/j.immuni.2014.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nairz M, Theurl I, Swirski FK, Weiss G. “Pumping iron”—how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflugers Arch. 2017;469(3–4):397–418. doi:10.1007/s00424-017-1944-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. London NR, Li DY. Robo4-dependent slit signaling stabilizes the vasculature during pathologic angiogenesis and cytokine storm. Curr Opin Hematol. 2011;18(3):186–90. doi:10.1097/MOH.0b013e328345a4b9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yadav SS, Narayan G. Role of ROBO4 signalling in developmental and pathological angiogenesis. Biomed Res Int. 2014;2014:683025. doi:10.1155/2014/683025.

    PubMed  PubMed Central  Google Scholar 

  46. Zhou Z, Tang AT, Wong WY, Bamezai S, Goddard LM, Shenkar R, et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature. 2016;532(7597):122–6. doi:10.1038/nature17178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–83. doi:10.1126/science.aag2590.

    Article  CAS  PubMed  Google Scholar 

  48. Di Bari M, Di Pinto G, Reale M, Mengod G, Tata AM. Cholinergic system and neuroinflammation: implication in multiple sclerosis. Cent Nerv Syst Agents Med Chem. 2016;

Download references

Acknowledgments

We would like to thank Mark H. Ginsberg from The University of California San Diego for helpful discussions.

Sources of Funding

This work was partially supported by a grant from the NIH (R21NS087328) to IAA, by the William and Judith Davis Fund in Neurovascular Surgery Research, and by the Safadi Translational Fellowship to RG. Funding sources played no role in the formulation of research questions nor the interpretation of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam A. Awad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in this study involving human participants were in accordance to the Declaration of Helsinki and approved by The University of Chicago Institutional Review Board (IRB). The ethical principles guiding the IRB are consistent with The Belmont Report and comply with the rules and regulations of The Federal Policy for the Protection of Human Subjects (56 FR 28003).

Electronic supplementary material

ESM 1

(PDF 937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girard, R., Zeineddine, H.A., Fam, M.D. et al. Plasma Biomarkers of Inflammation Reflect Seizures and Hemorrhagic Activity of Cerebral Cavernous Malformations. Transl. Stroke Res. 9, 34–43 (2018). https://doi.org/10.1007/s12975-017-0561-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0561-3

Keywords

Navigation