Skip to main content

Advertisement

Log in

Plasma Matrix Metalloproeteinase-9 Is Associated with Seizure and Angioarchitecture Changes in Brain Arteriovenous Malformations

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Both angiogenesis and inflammation contribute to activation of matrix metalloproeteinase-9 (MMP-9), which dissolves the extracellular matrix, disrupts the blood–brain barrier, and plays an important role in the pathogenesis of brain arteriovenous malformations (BAVMs). The key common cytokine in both angiogenesis and inflammation is interleukin 6 (IL-6). Previous studies have shown elevated systemic MMP-9 and decreased systemic vascular endothelial growth factor (VEGF) in BAVM patients. However, the clinical utility of plasma cytokines is unclear. The purpose of this study is to explore the relationship between plasma cytokines and the clinical presentations of BAVMs. Prospectively, we recruited naive BAVM patients without hemorrhage as the experimental group and unruptured intracranial aneurysm (UIA) patients as the control group. All patients received digital subtraction angiography, and plasma cytokines were collected from the lesional common carotid artery. Plasma cytokine levels were determined using a commercially available, monoclonal antibody–based enzyme-linked immunosorbent assay. Subgroup analysis based on hemorrhagic presentation and angiograchitecture was done for the BAVM group. Pearson correlations were calculated for the covariates. Means and differences for continuous and categorical variables were compared using Student’s t and χ2 tests respectively. Plasma MMP-9 levels were significantly higher in the BAVM group (42,945 ± 29,991 pg/mL) than in the UIA group (28,270 ± 17,119 pg/mL) (p < 0.001). Plasma MMP-9 levels in epileptic BAVMs (57,065 ± 35,732; n = 9) were higher than in non-epileptic BAVMs (35,032 ± 28,301; n = 19) (p = 0.049). Lower plasma MMP-9 levels were found in cases of BAVM with angiogenesis and with peudophlebitis. Plasma MMP-9 is a good biomarker reflecting ongoing vascular remodeling in BAVMs. Angiogenesis and pseudophlebitis are two angioarchitectural signs that reflect MMP-9 activities and can potentially serve as imaging biomarkers for epileptic BAVMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

 Data availability

All patient characteristics and data are available upon requests to the correspondent author.

Code Availability

Not applicable.

Abbreviations

BAVM:

Brain arteriovenous malformation

IL-1b:

Interlukin 1b

IL-6:

Interleukin-6

MMP-9:

Matrix metalloproteinase-9

TGFα:

Tumor growth factor α

VEGF:

Vascular endothelial growth factor

References

  1. Abecassis IJ, Xu DS, Batjer HH, Bendok BR (2014) Natural history of brain arteriovenous malformations: a systematic review. Neurosurg Focus 37:E7. https://doi.org/10.3171/2014.6.focus14250

    Article  PubMed  Google Scholar 

  2. Al-Shahi R (2001) A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain 124:1900–1926. https://doi.org/10.1093/brain/124.10.1900

    Article  CAS  PubMed  Google Scholar 

  3. Berman MF, Sciacca RR, Pile-Spellman J et al (2000) The epidemiology of brain arteriovenous malformations. Neurosurgery 47:389–397. https://doi.org/10.1097/00006123-200008000-00023

    Article  CAS  PubMed  Google Scholar 

  4. Bharatha A, Faughnan ME, Kim H et al (2012) Brain arteriovenous malformation multiplicity predicts the diagnosis of hereditary hemorrhagic telangiectasia: quantitative assessment. Stroke 43:72–78. https://doi.org/10.1161/strokeaha.111.629865

    Article  PubMed  Google Scholar 

  5. Dalton A, Dobson G, Prasad M, Mukerji N (2018) De novo intracerebral arteriovenous malformations and a review of the theories of their formation. Brit J Neurosurg 32:305–311. https://doi.org/10.1080/02688697.2018.1478060

    Article  CAS  Google Scholar 

  6. Nikolaev SI, Vetiska S, Bonilla X et al (2018) Somatic activating KRAS mutations in arteriovenous malformations of the brain. New Engl J Med 378:250–261. https://doi.org/10.1056/nejmoa1709449

    Article  CAS  PubMed  Google Scholar 

  7. Du R, Hashimoto T, Tihan T et al (2007) Growth and regression of arteriovenous malformations in a patient with hereditary hemorrhagic telangiectasia: Case report. J Neurosurg 106:470–477. https://doi.org/10.3171/jns.2007.106.3.470

    Article  PubMed  Google Scholar 

  8. Kiliç T, Pamir MN, Küllü S et al (2000) Expression of structural proteins and angiogenic factors in cerebrovascular anomalies. Neurosurgery 46:1179–1192. https://doi.org/10.1097/00006123-200005000-00032

    Article  PubMed  Google Scholar 

  9. Komiyama M (2016) Pathogenesis of brain arteriovenous malformations. Neurol Med-chir 56:317–325. https://doi.org/10.2176/nmc.ra.2016-0051

    Article  Google Scholar 

  10. Leblanc GG, Golanov E, Awad IA et al (2009) Biology of vascular malformations of the brain. Stroke 40:e694–e702. https://doi.org/10.1161/strokeaha.109.563692

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mouchtouris N, Jabbour PM, Starke RM et al (2014) Biology of cerebral arteriovenous malformations with a focus on inflammation. J Cereb Blood Flow Metabolism Official J Int Soc Cereb Blood Flow Metabolism 35:167–175. https://doi.org/10.1038/jcbfm.2014.179

    Article  CAS  Google Scholar 

  12. Chen Y (2006) MMP-9 expression is associated with leukocytic but not endothelial markers in brain arteriovenous malformations. Front Biosci 11:3121. https://doi.org/10.2741/2037

    Article  CAS  PubMed  Google Scholar 

  13. Hashimoto T, Mesa-Tejada R, Quick CM et al (2001) Evidence of increased endothelial cell turnover in brain arteriovenous malformations. Neurosurgery 49:124. https://doi.org/10.1097/00006123-200107000-00019

    Article  CAS  PubMed  Google Scholar 

  14. Starke RM, Komotar RJ, Hwang BY et al (2010) Systemic expression of matrix metalloproteinase-9 in patients with cerebral arteriovenous malformations. Neurosurgery 66:343–8-discussion 348. https://doi.org/10.1227/01.neu.0000363599.72318.ba

  15. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathology 146:1029–1039

    CAS  Google Scholar 

  16. Ferrara N, Houck KA, Jakeman LB et al (1991) The vascular endothelial growth factor family of polypeptides. J Cell Biochem 47:211–218. https://doi.org/10.1002/jcb.240470305

    Article  CAS  PubMed  Google Scholar 

  17. Hoeben A, Landuyt B, Highley MS et al (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580. https://doi.org/10.1124/pr.56.4.3

    Article  CAS  PubMed  Google Scholar 

  18. Hashimoto T, Wu Y, Lawton MT et al (2005) Coexpression of angiogenic factors in brain arteriovenous malformations. Neurosurgery 56:1058–65; discussion 1058–65. https://doi.org/10.1227/01.neu.0000157925.19676.c3

  19. Kim GH, Hahn DK, Kellner CP et al (2008) Plasma levels of vascular endothelial growth factor after treatment for cerebral arteriovenous malformations. Stroke 39:2274–2279. https://doi.org/10.1161/strokeaha.107.512442

    Article  CAS  PubMed  Google Scholar 

  20. Sandalcioglu IE, Wende D, Eggert A et al (2006) Vascular endothelial growth factor plasma levels are significantly elevated in patients with cerebral arteriovenous malformations. Cerebrovasc Dis 21:154–158. https://doi.org/10.1159/000090526

    Article  CAS  PubMed  Google Scholar 

  21. da Costa L, Wallace MC, ter Brugge KG et al (2009) The natural history and predictive features of hemorrhage from brain arteriovenous malformations. Stroke 40:100–105. https://doi.org/10.1161/strokeaha.108.524678

    Article  PubMed  Google Scholar 

  22. Benson JC, Chiu S, Flemming K et al (2019) MR characteristics of unruptured intracranial arteriovenous malformations associated with seizure as initial clinical presentation. J Neurointerv Surg 12:186–191. https://doi.org/10.1136/neurintsurg-2019-015021

    Article  PubMed  Google Scholar 

  23. Shankar JJS, Menezes RJ, Pohlmann-Eden B et al (2012) Angioarchitecture of brain AVM determines the presentation with seizures: proposed scoring system. Am J Neuroradiol 34:1028–1034. https://doi.org/10.3174/ajnr.a3361

    Article  PubMed  Google Scholar 

  24. Chen Y, Zhu W, Bollen AW et al (2008) Evidence of inflammatory cell involvement in brain arteriovenous malformations. Neurosurgery 62:1340. https://doi.org/10.1227/01.neu.0000312339.62339.fc

    Article  PubMed  Google Scholar 

  25. Guo WY, Nordell B, Karlsson B et al (1993) Target delineation in radiosurgery for cerebral arteriovenous malformations. Assessment of the value of stereotaxic MR imaging and MR angiography. Acta Radiologica Stock Swed 34:457–63

  26. Joint Writing Group of the Technology Assessment Committee American Society of Interventional and Therapeutic Neuroradiology; Joint Section on Cerebrovascular Neurosurgery a Section of the American Association of Neurological Surgeons and Congress of Neurological Surgeons; Section of Stroke and the Section of Interventional Neurology of the American Academy of Neurology, Atkinson P, Awad I, Batjer H, Dowd C, Furlan A, Giannotta S et al (2001) Reporting terminology for brain arteriovenous malformation clinical and radiographic features for use in clinical trials. Stroke 32:1430–1442. https://doi.org/10.1161/01.STR.32.6.1430

  27. Taeshineetanakul P, Krings T, Geibprasert S et al (2012) Angioarchitecture determines obliteration rate after radiosurgery in brain arteriovenous malformations. Neurosurgery 71:1071–8-discussion 1079. https://doi.org/10.1227/neu.0b013e31826f79ec

  28. Chalouhi N, Ali MS, Jabbour PM et al (2012) Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metabolism 32:1659–1676. https://doi.org/10.1038/jcbfm.2012.84

    Article  CAS  Google Scholar 

  29. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension. Hypertension 38:581–587. https://doi.org/10.1161/hy09t1.096249

    Article  CAS  PubMed  Google Scholar 

  30. Turner RJ, Sharp FR (2016) Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 10:56. https://doi.org/10.3389/fncel.2016.00056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li X, Wang R, Wang X et al (2013) Relevance of IL-6 and MMP-9 to cerebral arteriovenous malformation and hemorrhage. Mol Med Rep 7:1261–1266. https://doi.org/10.3892/mmr.2013.1332

    Article  CAS  PubMed  Google Scholar 

  32. Wei T, Zhang H, Cetin N et al (2016) Elevated expression of matrix metalloproteinase-9 not matrix metalloproteinase-2 contributes to progression of extracranial arteriovenous malformation. Sci Rep-uk 6:24378. https://doi.org/10.1038/srep24378

    Article  CAS  Google Scholar 

  33. Xu Z, Rui Y-N, Hagan JP, Kim DH (2019) Intracranial aneurysms: pathology, genetics, and molecular mechanisms. Neuromol Med 21:325–343. https://doi.org/10.1007/s12017-019-08537-7

    Article  CAS  Google Scholar 

  34. Wetzel-Strong SE, Weinsheimer S, Nelson J et al (2021) Pilot investigation of circulating angiogenic and inflammatory biomarkers associated with vascular malformations. Orphanet J Rare Dis 16:372. https://doi.org/10.1186/s13023-021-02009-7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang K, Zhao S, Liu B et al (2018) Perturbations of BMP/TGF-β and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). J Med Genet 55:675. https://doi.org/10.1136/jmedgenet-2017-105224

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H-F, Zhao M-G, Liang G-B et al (2013) Expression of pro-inflammatory cytokines and the risk of intracranial aneurysm. Inflammation 36:1195–1200. https://doi.org/10.1007/s10753-013-9655-6

    Article  CAS  PubMed  Google Scholar 

  37. Achrol AS, Pawlikowska L, McCulloch CE et al (2006) Tumor necrosis factor-alpha-238G>A promoter polymorphism is associated with increased risk of new hemorrhage in the natural course of patients with brain arteriovenous malformations. Stroke 37:231–234. https://doi.org/10.1161/01.str.0000195133.98378.4b

    Article  CAS  PubMed  Google Scholar 

  38. Chen Y, Pawlikowska L, Yao JS et al (2006) Interleukin-6 involvement in brain arteriovenous malformations. Ann Neurol 59:72–80. https://doi.org/10.1002/ana.20697

    Article  CAS  PubMed  Google Scholar 

  39. Lin CJ, Yang HC, Chien AC et al (2018) In-room assessment of intravascular velocity from time-resolved rotational angiography in patients with arteriovenous malformation: a pilot study. J Neurointerv Surg 10:580. https://doi.org/10.1136/neurintsurg-2017-013387

    Article  PubMed  Google Scholar 

  40. Wu C, Ansari SA, Honarmand AR et al (2015) Evaluation of 4D vascular flow and tissue perfusion in cerebral arteriovenous malformations: influence of Spetzler-Martin grade, clinical presentation, and AVM risk factors. Am J Neuroradiol 36:1142–1149. https://doi.org/10.3174/ajnr.a4259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sho E, Sho M, Singh TM et al (2002) Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp Mol Pathol 73:142–153. https://doi.org/10.1006/exmp.2002.2457

    Article  CAS  PubMed  Google Scholar 

  42. Corti P, Young S, Chen C-Y et al (2011) Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138:1573–1582. https://doi.org/10.1242/dev.060467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hashimoto T, Wen G, Lawton MT et al (2003) Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke 34:925–931. https://doi.org/10.1161/01.str.0000061888.71524.df

    Article  CAS  PubMed  Google Scholar 

  44. Woodside KJ, Hu M, Burke A et al (2003) Morphologic characteristics of varicose veins: possible role of metalloproteinases. J Vasc Surg 38:162–169. https://doi.org/10.1016/s0741-5214(03)00134-4

    Article  PubMed  Google Scholar 

  45. Bouquier N, Girard B, Arias JA et al (2020) Gelatinase biosensor reports cellular remodeling during epileptogenesis. Frontiers Synaptic Neurosci 12:15. https://doi.org/10.3389/fnsyn.2020.00015

    Article  CAS  Google Scholar 

  46. Nagy V, Bozdagi O, Matynia A et al (2006) Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci 26:1923–1934. https://doi.org/10.1523/jneurosci.4359-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Szepesi Z, Bijata M, Ruszczycki B et al (2013) Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation. PLoS ONE 8:e63314. https://doi.org/10.1371/journal.pone.0063314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gore SV, James EJ, Huang L et al (2021) Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis. Elife 10:e62147. https://doi.org/10.7554/elife.62147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Broekaart DWM, Bertran A, Jia S et al (2020) The matrix metalloproteinase inhibitor IPR-179 has antiseizure and antiepileptogenic effects. J Clin Invest 131.https://doi.org/10.1172/jci138332

  50. Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338. https://doi.org/10.1148/radiol.2020191145

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Joseph Lavallee for English editing and Miss Hsin-Yi Huang for statistical assistance.

Funding

This work was supported by the Taipei Veterans General Hospital (grant number: V110-C- 056, V110C-080), Taiwan’s Ministry of Science and Technology (grant number: MOST-106–2314-B-010 -015 –MY2, MOST 108–2321-B-010–012-MY2, MOST 109–2314-B-075–055), and the Brain Research Center, National Yang Ming Chiao Tung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (grant number: MOE 109BRC-B408) in Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

Concept of study design: C.-J. Lin, Y.-T. Liu, H.-M. Wu, and H.-C. Yang. Data collection and statistics: C.-J. Lin, Y.-T. Liu, F.-C. Chang, H.-C. Yang, and K.-D. Liou. Manuscript draft: C.-J. Lin, Y.-S. Hu, C.-C. Lee, and Y.-T. Liu. Integration of the manuscript: C.-J. Lin, W.-Y. Guo, H.-M. Wu, K.-D. Liou, and Y.-T. Liu.

Corresponding author

Correspondence to Chung-Jung Lin.

Ethics declarations

Ethics Approval

All the participants have given their signed informed consent. This study was approved by the local ethnic committee (IRB number: 2020–06-005C).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests. MMP-9 regardless hemorrhage or not.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yo-Tsen Liu and Cheng-Chia Lee contribute equally as first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YT., Lee, CC., Lin, CF. et al. Plasma Matrix Metalloproeteinase-9 Is Associated with Seizure and Angioarchitecture Changes in Brain Arteriovenous Malformations. Mol Neurobiol 59, 5925–5934 (2022). https://doi.org/10.1007/s12035-022-02958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02958-5

Keywords

Navigation