Skip to main content
Log in

Anesthesia in Experimental Stroke Research

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Anesthetics have enabled major advances in development of experimental models of human stroke. Yet, their profound pharmacologic effects on neural function can confound the interpretation of experimental stroke research. Anesthetics have species-, drug-, and dose-specific effects on cerebral blood flow and metabolism, neurovascular coupling, autoregulation, ischemic depolarizations, excitotoxicity, inflammation, neural networks, and numerous molecular pathways relevant for stroke outcome. Both preconditioning and postconditioning properties have been described. Anesthetics also modulate systemic arterial blood pressure, lung ventilation, and thermoregulation, all of which may interact with the ischemic insult as well as the therapeutic interventions. These confounds present a dilemma. Here, we provide an overview of the anesthetic mechanisms of action and molecular and physiologic effects on factors relevant to stroke outcomes that can guide the choice and optimization of the anesthetic regimen in experimental stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warner DS, James ML, Laskowitz DT, Wijdicks EF. Translational research in acute central nervous system injury: lessons learned and the future. JAMA Neurol. 2014;71(10):1311–8.

    Article  PubMed  Google Scholar 

  2. Schifilliti D, Grasso G, Conti A, Fodale V. Anaesthetic-related neuroprotection: intravenous or inhalational agents? CNS Drugs. 2010;24(11):893–907.

    CAS  PubMed  Google Scholar 

  3. Kety SS, Schmidt CF. The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest. 1946;25:107–19.

    Article  PubMed Central  Google Scholar 

  4. Himwich WA, Homburger E, et al. Brain metabolism in man; unanesthetized and in pentothal narcosis. Am J Psychiatry. 1947;103(5):689–96.

    Article  CAS  PubMed  Google Scholar 

  5. Michenfelder JD. The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology. 1974;41(3):231–6.

    Article  CAS  PubMed  Google Scholar 

  6. Michenfelder JD, Theye RA. The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology. 1970;33(4):430–9.

    Article  CAS  PubMed  Google Scholar 

  7. Todd MM, Drummond JC. A comparison of the cerebrovascular and metabolic effects of halothane and isoflurane in the cat. Anesthesiology. 1984;60(4):276–82.

    Article  CAS  PubMed  Google Scholar 

  8. Scheller MS, Tateishi A, Drummond JC, Zornow MH. The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology. 1988;68(4):548–51.

    Article  CAS  PubMed  Google Scholar 

  9. Van Hemelrijck J, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg. 1990;71(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  10. Nugent M, Artru AA, Michenfelder JD. Cerebral metabolic, vascular and protective effects of midazolam maleate: comparison to diazepam. Anesthesiology. 1982;56(3):172–6.

    Article  CAS  PubMed  Google Scholar 

  11. Renou AM, Vernhiet J, Macrez P, Constant P, Billerey J, Khadaroo MY, et al. Cerebral blood flow and metabolism during etomidate anaesthesia in man. Br J Anaesth. 1978;50(10):1047–51.

    Article  CAS  PubMed  Google Scholar 

  12. Post RM, Kennedy C, Shinohara M, Squillace K, Miyaoka M, Suda S, et al. Metabolic and behavioral consequences of lidocaine-kindled seizures. Brain Res. 1984;324(2):295–303.

    Article  CAS  PubMed  Google Scholar 

  13. Carlsson C, Smith DS, Keykhah MM, Englebach I, Harp JR. The effects of high-dose fentanyl on cerebral circulation and metabolism in rats. Anesthesiology. 1982;57(5):375–80.

    Article  CAS  PubMed  Google Scholar 

  14. Drummond JC, Dao AV, Roth DM, Cheng CR, Atwater BI, Minokadeh A, et al. Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology. 2008;108(2):225–32. doi:10.1097/01.anes.0000299576.00302.4c.

    Article  CAS  PubMed  Google Scholar 

  15. Vollenweider FX, Leenders KL, Scharfetter C, Antonini A, Maguire P, Missimer J, et al. Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol. 1997;7(1):9–24.

    Article  CAS  PubMed  Google Scholar 

  16. Oguchi K, Arakawa K, Nelson SR, Samson F. The influence of droperidol, diazepam, and physostigmine on ketamine-induced behavior and brain regional glucose utilization in rat. Anesthesiology. 1982;57(5):353–8.

    Article  CAS  PubMed  Google Scholar 

  17. Pelligrino DA, Miletich DJ, Hoffman WE, Albrecht RF. Nitrous oxide markedly increases cerebral cortical metabolic rate and blood flow in the goat. Anesthesiology. 1984;60(5):405–12.

    Article  CAS  PubMed  Google Scholar 

  18. Dashdorj N, Corrie K, Napolitano A, Petersen E, Mahajan RP, Auer DP. Effects of subanesthetic dose of nitrous oxide on cerebral blood flow and metabolism: a multimodal magnetic resonance imaging study in healthy volunteers. Anesthesiology. 2013;118(3):577–86. doi:10.1097/ALN.0b013e3182800d58.

    Article  CAS  PubMed  Google Scholar 

  19. Reinstrup P, Ryding E, Ohlsson T, Sandell A, Erlandsson K, Ljunggren K, et al. Regional cerebral metabolic rate (positron emission tomography) during inhalation of nitrous oxide 50 % in humans. Br J Anaesth. 2008;100(1):66–71.

    Article  CAS  PubMed  Google Scholar 

  20. Reasoner DK, Warner DS, Todd MM, McAllister A. Effects of nitrous oxide on cerebral metabolic rate in rats anaesthetized with isoflurane. Br J Anaesth. 1990;65(2):210–5.

    Article  CAS  PubMed  Google Scholar 

  21. Kaisti KK, Langsjo JW, Aalto S, Oikonen V, Sipila H, Teras M, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99(3):603–13.

    Article  CAS  PubMed  Google Scholar 

  22. Kofke WA, Garman RH, Tom WC, Rose ME, Hawkins RA. Alfentanil-induced hypermetabolism, seizure, and histopathology in rat brain. Anesth Analg. 1992;75(6):953–64.

    Article  CAS  PubMed  Google Scholar 

  23. Jones MV, Brooks PA, Harrison NL. Enhancement of gamma-aminobutyric acid-activated Cl- currents in cultured rat hippocampal neurones by three volatile anaesthetics. J Physiol. 1992;449:279–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang J, Zorumski CF. Effects of isoflurane on N-methyl-D-aspartate gated ion channels in cultured rat hippocampal neurons. Ann N Y Acad Sci. 1991;625:287–9.

    Article  CAS  PubMed  Google Scholar 

  25. Irifune M, Sato T, Kamata Y, Nishikawa T, Dohi T, Kawahara M. Evidence for GABA(a) receptor agonistic properties of ketamine: convulsive and anesthetic behavioral models in mice. Anesth Analg. 2000;91(1):230–6.

    CAS  PubMed  Google Scholar 

  26. Wakita M, Kotani N, Yamaga T, Akaike N. Nitrous oxide directly inhibits action potential-dependent neurotransmission from single presynaptic boutons adhering to rat hippocampal CA3 neurons. Brain Res Bull. 2015;118:34–45.

    Article  CAS  PubMed  Google Scholar 

  27. Yamakura T, Mori H, Masaki H, Shimoji K, Mishnina M. Different sensitivities of NMDA receptor channel subtypes to non-competitive antagonists. Neuroreport. 1993;4:687–90.

    Article  CAS  PubMed  Google Scholar 

  28. Mennerick S, Jevtovic-Todorovic V, Todorovic SM, Shen W, Olney JW, Zorumski CF. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci. 1998;18(23):9716–26.

    CAS  PubMed  Google Scholar 

  29. Dickinson R, Peterson BK, Banks P, Simillis C, Martin JC, Valenzuela CA, et al. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology. 2007;107(5):756–67.

    Article  CAS  PubMed  Google Scholar 

  30. Sheng SP, Lei B, James ML, Lascola CD, Venkatraman TN, Jung JY, et al. Xenon neuroprotection in experimental stroke: interactions with hypothermia and intracerebral hemorrhage. Anesthesiology. 2012;117(6):1262–75. doi:10.1097/ALN.0b013e3182746b81.

    Article  CAS  PubMed  Google Scholar 

  31. Rex S, Schaefer W, Meyer PH, Rossaint R, Boy C, Setani K, et al. Positron emission tomography study of regional cerebral metabolism during general anesthesia with xenon in humans. Anesthesiology. 2006;105(5):936–43.

    Article  CAS  PubMed  Google Scholar 

  32. Jensen NF, Todd MM, Kramer DJ, Leonard PA, Warner DS. A comparison of the vasodilating effects of halothane and isoflurane on the isolated rabbit basilar artery with and without intact endothelium. Anesthesiology. 1992;76(4):624–34.

    Article  CAS  PubMed  Google Scholar 

  33. Gelb AW, Zhang C, Hamilton JT. Propofol induces dilation and inhibits constriction in Guinea pig basilar arteries. Anesth Analg. 1996;83(3):472–6.

    Article  CAS  PubMed  Google Scholar 

  34. Fukuda S, Murakawa T, Takeshita H, Toda N. Direct effects of ketamine on isolated canine cerebral and mesenteric arteries. Anesth Analg. 1983;62(6):553–8.

    Article  CAS  PubMed  Google Scholar 

  35. Matta BF, Mayberg TS, Lam AM. Direct cerebrovasodilatory effects of halothane, isoflurane, and desflurane during propofol-induced isoelectric electroencephalogram in humans. Anesthesiology. 1995;83(5):980–5 .discussion 27A

    Article  CAS  PubMed  Google Scholar 

  36. Hansen TD, Warner DS, Todd MM, Vust LJ. Effects of nitrous oxide and volatile anaesthetics on cerebral blood flow. Br J Anaesth. 1989;63(3):290–5.

    Article  CAS  PubMed  Google Scholar 

  37. Lenz C, Frietsch T, Futterer C, Rebel A, van Ackern K, Kuschinsky W, et al. Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane. Anesthesiology. 1999;91(6):1720–3.

    Article  CAS  PubMed  Google Scholar 

  38. Franceschini MA, Radhakrishnan H, Thakur K, Wu W, Ruvinskaya S, Carp S, et al. The effect of different anesthetics on neurovascular coupling. NeuroImage. 2010;51(4):1367–77.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miletich DJ, Ivankovich AD, Albrecht RF, Reimann CR, Rosenberg R, McKissic ED. Absence of autoregulation of cerebral blood flow during halothane and enflurane anesthesia. Anesth Analg. 1976;55(1):100–9.

    Article  CAS  PubMed  Google Scholar 

  40. McPherson RW, Traystman RJ. Effects of isoflurane on cerebral autoregulation in dogs. Anesthesiology. 1988;69(4):493–9.

    Article  CAS  PubMed  Google Scholar 

  41. Werner C, Lu H, Engelhard K, Unbehaun N, Kochs E. Sevoflurane impairs cerebral blood flow autoregulation in rats: reversal by nonselective nitric oxide synthase inhibition. Anesth Analg. 2005;101(2):509–16.

    Article  CAS  PubMed  Google Scholar 

  42. Strebel S, Lam AM, Matta B, Mayberg TS, Aaslid R, Newell DW. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology. 1995;83(1):66–76.

    Article  CAS  PubMed  Google Scholar 

  43. Goettel N, Patet C, Rossi A, Burkhart CS, Czosnyka M, Strebel SP, et al. Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups. J Clin Monit Comput. 2016;30(3):255–64.

    Article  PubMed  Google Scholar 

  44. Girling KJ, Cavill G, Mahajan RP. The effects of nitrous oxide and oxygen on transient hyperemic response in human volunteers. Anesth Analg. 1999;89(1):175–80.

    CAS  PubMed  Google Scholar 

  45. Steiner LA, Johnston AJ, Chatfield DA, Czosnyka M, Coleman MR, Coles JP, et al. The effects of large-dose propofol on cerebrovascular pressure autoregulation in head-injured patients. Anesth Analg. 2003;97(2):572–6.

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt A, Ryding E, Akeson J. Racemic ketamine does not abolish cerebrovascular autoregulation in the pig. Acta Anaesthesiol Scand. 2003;47(5):569–75.

    Article  CAS  PubMed  Google Scholar 

  47. Engelhard K, Werner C, Lu H, Mollenberg O, Kochs E. Effect of S-(+)-ketamine on autoregulation of cerebral blood flow. Anasthesiol Intensivmed Notfallmed Schmerzther. 1997;32(12):721–5.

    Article  CAS  PubMed  Google Scholar 

  48. Engelhard K, Werner C, Mollenberg O, Kochs E. S(+)-ketamine/propofol maintain dynamic cerebrovascular autoregulation in humans. Can J Anaesth. 2001;48(10):1034–9.

    Article  CAS  PubMed  Google Scholar 

  49. Ogawa Y, Iwasaki K, Aoki K, Gokan D, Hirose N, Kato J, et al. The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation. Anesth Analg. 2010;111(5):1279–84.

    Article  CAS  PubMed  Google Scholar 

  50. Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J, Ogawa S. Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology. 2008;109(4):642–50.

    Article  CAS  PubMed  Google Scholar 

  51. Ayad M, Verity MA, Rubinstein EH. Lidocaine delays cortical ischemic depolarization: relationship to electrophysiologic recovery and neuropathology. J Neurosurg Anesthesiol. 1994;6(2):98–110.

    Article  CAS  PubMed  Google Scholar 

  52. Sasaki R, Hirota K, Roth SH, Yamazaki M. Anoxic depolarization of rat hippocampal slices is prevented by thiopental but not by propofol or isoflurane. Br J Anaesth. 2005;94(4):486–91.

    Article  CAS  PubMed  Google Scholar 

  53. Nakashima K, Todd MM. Effects of hypothermia, pentobarbital, and isoflurane on postdepolarization amino acid release during complete global cerebral ischemia. Anesthesiology. 1996;85(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  54. Kobayashi M, Takeda Y, Taninishi H, Takata K, Aoe H, Morita K. Quantitative evaluation of the neuroprotective effects of thiopental sodium, propofol, and halothane on brain ischemia in the gerbil: effects of the anesthetics on ischemic depolarization and extracellular glutamate concentration. J Neurosurg Anesthesiol. 2007;19(3):171–8.

    Article  PubMed  Google Scholar 

  55. Verhaegen MJ, Todd MM, Warner DS. A comparison of cerebral ischemic flow thresholds during halothane/N2O and isoflurane/N2O anesthesia in rats. Anesthesiology. 1992;76(5):743–54.

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Cottrell JE, Kass IS. Effects of desflurane and propofol on electrophysiological parameters during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells. Neuroscience. 2009;160(1):140–8.

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Meng F, Cottrell JE, Kass IS. The differential effects of volatile anesthetics on electrophysiological and biochemical changes during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells. Neuroscience. 2006;140(3):957–67.

    Article  CAS  PubMed  Google Scholar 

  58. Verhaegen M, Todd MM, Warner DS. Ischemic depolarization during halothane-nitrous oxide and isoflurane-nitrous oxide anesthesia. An examination of cerebral blood flow threshold and times to depolarization. Anesthesiology. 1994;81(4):965–73.

    Article  CAS  PubMed  Google Scholar 

  59. Nellgård B, Mackensen GB, Pineda J, Wellons 3rd JC, Pearlstein RD, Warner DS. Anesthetic effects on cerebral metabolic rate predict histologic outcome from near-complete forebrain ischemia in the rat. Anesthesiology. 2000;93(2):431–6.

    Article  PubMed  Google Scholar 

  60. Hartings JA, Shuttleworth CW, Kirov SA, Ayata C, Hinzman JM, Foreman B et al. The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J Cereb Blood Flow Metab. 2016. doi:10.1177/0271678X16654495.

  61. Kudo C, Nozari A, Moskowitz MA, Ayata C. The impact of anesthetics and hyperoxia on cortical spreading depression. Exp Neurol. 2008;212(1):201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saito R, Graf R, Hubel K, Fujita T, Rosner G, Heiss WD. Reduction of infarct volume by halothane: effect on cerebral blood flow or perifocal spreading depression-like depolarizations. J Cereb Blood Flow Metab. 1997;17(8):857–64.

    Article  CAS  PubMed  Google Scholar 

  63. Takagaki M, Feuerstein D, Kumagai T, Gramer M, Yoshimine T, Graf R. Isoflurane suppresses cortical spreading depolarizations compared to propofol--implications for sedation of neurocritical care patients. Exp Neurol. 2014;252:12–7.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao L, Nowak Jr TS. Preconditioning cortical lesions reduce the incidence of peri-infarct depolarizations during focal ischemia in the spontaneously hypertensive rat: interaction with prior anesthesia and the impact of hyperglycemia. J Cereb Blood Flow Metab. 2015;35(7):1181–90.

  65. Kudo C, Toyama M, Boku A, Hanamoto H, Morimoto Y, Sugimura M, et al. Anesthetic effects on susceptibility to cortical spreading depression. Neuropharmacology. 2013;67:32–6.

    Article  CAS  PubMed  Google Scholar 

  66. Hertle DN, Dreier JP, Woitzik J, Hartings JA, Bullock R, Okonkwo DO, et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain J Neurol. 2012;135(Pt 8):2390–8.

    Article  Google Scholar 

  67. Sakowitz OW, Kiening KL, Krajewski KL, Sarrafzadeh AS, Fabricius M, Strong AJ, et al. Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury. Stroke. 2009;40(8):e519–22.

    Article  CAS  PubMed  Google Scholar 

  68. Michenfelder JD, Theye RA. Cerebral protection by thiopental during hypoxia. Anesthesiology. 1973;39(5):510–7.

    Article  CAS  PubMed  Google Scholar 

  69. Newberg LA, Michenfelder JD. Cerebral protection by isoflurane during hypoxemia or ischemia. Anesthesiology. 1983;59(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  70. Ishida K, Berger M, Nadler J, Warner DS. Anesthetic neuroprotection: antecedents and an appraisal of preclinical and clinical data quality. Curr Pharm Des. 2014;20(36):5751–65.

    Article  CAS  PubMed  Google Scholar 

  71. Kudo M, Aono M, Lee Y, Massey G, Pearlstein RD, Warner DS. Effects of volatile anesthetics on N-methyl-D-aspartate excitotoxicity in primary rat neuronal-glial cultures. Anesthesiology. 2001;95(3):756–65.

    Article  CAS  PubMed  Google Scholar 

  72. Kimbro JR, Kelly PJ, Drummond JC, Cole DJ, Patel PM. Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex. Anesthesiology. 2000;92(3):806–12.

    Article  CAS  PubMed  Google Scholar 

  73. Harada H, Kelly PJ, Cole DJ, Drummond JC, Patel PM. Isoflurane reduces N-methyl-D-aspartate toxicity in vivo in the rat cerebral cortex. Anesth Analg. 1999;89(6):1442–7.

    CAS  PubMed  Google Scholar 

  74. Eilers H, Bickler PE. Hypothermia and isoflurane similarly inhibit glutamate release evoked by chemical anoxia in rat cortical brain slices. Anesthesiology. 1996;85(3):600–7.

    Article  CAS  PubMed  Google Scholar 

  75. Popovic R, Liniger R, Bickler PE. Anesthetics and mild hypothermia similarly prevent hippocampal neuron death in an in vitro model of cerebral ischemia. Anesthesiology. 2000;92(5):1343–9.

    Article  CAS  PubMed  Google Scholar 

  76. Elsersy H, Mixco J, Sheng H, Pearlstein RD, Warner DS. Selective gamma-aminobutyric acid type a receptor antagonism reverses isoflurane ischemic neuroprotection. Anesthesiology. 2006;105(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  77. Gray JJ, Bickler PE, Fahlman CS, Zhan X, Schuyler JA. Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases. Anesthesiology. 2005;102(3):606–15.

    Article  CAS  PubMed  Google Scholar 

  78. Sakai H, Sheng H, Yates RB, Ishida K, Pearlstein RD, Warner DS. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. Anesthesiology. 2007;106(1):92–9 .discussion 8-10

    Article  CAS  PubMed  Google Scholar 

  79. Warner DS, McFarlane C, Todd MM, Ludwig P, McAllister AM. Sevoflurane and halothane reduce focal ischemic brain damage in the rat. Possible influence on thermoregulation. Anesthesiology. 1993;79(5):985–92.

    Article  CAS  PubMed  Google Scholar 

  80. Pape M, Engelhard K, Eberspacher E, Hollweck R, Kellermann K, Zintner S, et al. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. Anesth Analg. 2006;103(1):173–9.

    Article  CAS  PubMed  Google Scholar 

  81. Elsersy H, Sheng H, Lynch JR, Moldovan M, Pearlstein RD, Warner DS. Effects of isoflurane versus fentanyl-nitrous oxide anesthesia on long-term outcome from severe forebrain ischemia in the rat. Anesthesiology. 2004;100(5):1160–6.

    Article  CAS  PubMed  Google Scholar 

  82. Inoue S, Davis DP, Drummond JC, Cole DJ, Patel PM. The combination of isoflurane and caspase 8 inhibition results in sustained neuroprotection in rats subject to focal cerebral ischemia. Anesth Analg. 2006;102(5):1548–55.

    Article  CAS  PubMed  Google Scholar 

  83. Jevtovic-Todorovic V, Todorovic S, Mennerick S, Powell K, Dikranian K, Benshoff ND, et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nature Med. 1998;4:460–3.

    Article  CAS  PubMed  Google Scholar 

  84. Yokoo N, Sheng H, Mixco J, Homi HM, Pearlstein RD, Warner DS. Intraischemic nitrous oxide alters neither neurologic nor histologic outcome: a comparison with dizocilpine. Anesth Analg. 2004;99(3):896–903.

    Article  CAS  PubMed  Google Scholar 

  85. David HN, Leveille F, Chazalviel L, MacKenzie ET, Buisson A, Lemaire M, et al. Reduction of ischemic brain damage by nitrous oxide and xenon. J Cereb Blood Flow Metab. 2003;23(10):1168–73.

    Article  CAS  PubMed  Google Scholar 

  86. Haelewyn B, David HN, Rouillon C, Chazalviel L, Lecocq M, Risso JJ, et al. Neuroprotection by nitrous oxide: facts and evidence. Crit Care Med. 2008;36(9):2651–9.

    Article  CAS  PubMed  Google Scholar 

  87. Taninishi H, Takeda Y, Kobayashi M, Sasaki T, Arai M, Morita K. Effect of nitrous oxide on neuronal damage and extracellular glutamate concentration as a function of mild, moderate, or severe ischemia in halothane-anesthetized gerbils. Anesthesiology. 2008;108(6):1063–70.

    Article  CAS  PubMed  Google Scholar 

  88. Pasternak JJ, McGregor DG, Lanier WL, Schroeder DR, Rusy DA, Hindman B, et al. Effect of nitrous oxide use on long-term neurologic and neuropsychological outcome in patients who received temporary proximal artery occlusion during cerebral aneurysm clipping surgery. Anesthesiology. 2009;110(3):563–73.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nehls DG, Todd MM, Spetzler RF, Drummond JC, Thompson RA, Johnson PC. A comparison of the cerebral protective effects of isoflurane and barbiturates during temporary focal ischemia in primates. Anesthesiology. 1987;66(4):453–64.

    Article  CAS  PubMed  Google Scholar 

  90. Warner DS, Takaoka S, Wu B, Ludwig PS, Pearlstein RD, Brinkhous AD, et al. Electroencephalographic burst suppression is not required to elicit maximal neuroprotection from pentobarbital in a rat model of focal cerebral ischemia. Anesthesiology. 1996;84(6):1475–84.

    Article  CAS  PubMed  Google Scholar 

  91. Gisvold SE, Safar P, Hendrickx HH, Rao G, Moossy J, Alexander H. Thiopental treatment after global brain ischemia in pigtailed monkeys. Anesthesiology. 1984;60(2):88–96.

    Article  CAS  PubMed  Google Scholar 

  92. Bleyaert AL, Nemoto EM, Safar P, Stezoski SM, Mickell JJ, Moossy J, et al. Thiopental amelioration of brain damage after global ischemia in monkeys. Anesthesiology. 1978;49(6):390–8.

    Article  CAS  PubMed  Google Scholar 

  93. Smith DS, Rehncrona S, Westerberg E, Akesson B, Siesjo BK. Lipid peroxidation in brain tissue in vitro: antioxidant effects of barbiturates. Acta Physiol Scand. 1979;105(4):527–9.

    Article  CAS  PubMed  Google Scholar 

  94. Markowitz GJ, Kadam SD, Smith DR, Johnston MV, Comi AM. Different effects of high- and low-dose phenobarbital on post-stroke seizure suppression and recovery in immature CD1 mice. Epilepsy Res. 2011;94(3):138–48. doi:10.1016/j.eplepsyres.2011.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hudetz JA, Pagel PS. Neuroprotection by ketamine: a review of the experimental and clinical evidence. J Cardiothorac Vasc Anesth. 2010;24(1):131–42.

    Article  CAS  PubMed  Google Scholar 

  96. Jensen ML, Auer RN. Ketamine fails to protect against ischaemic neuronal necrosis in the rat. Br J Anaesth. 1988;61(2):206–10.

    Article  CAS  PubMed  Google Scholar 

  97. Ridenour TR, Warner DS, Todd MM, Baker MT. Effects of ketamine on outcome from temporary middle cerebral artery occlusion in the spontaneously hypertensive rat. Brain Res. 1991;565(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  98. Engelhard K, Werner C, Eberspacher E, Bachl M, Blobner M, Hildt E, et al. The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg. 2003;96(2):524–31.

    CAS  PubMed  Google Scholar 

  99. Winkelheide U, Lasarzik I, Kaeppel B, Winkler J, Werner C, Kochs E, et al. Dose-dependent effect of S(+) ketamine on post-ischemic endogenous neurogenesis in rats. Acta Anaesthesiol Scand. 2009;53(4):528–33.

    Article  CAS  PubMed  Google Scholar 

  100. Nurse S, Corbett D. Neuroprotection after several days of mild, drug-induced hypothermia. J Cereb Blood Flow Metab. 1996;16(3):474–80.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang L, Mitani A, Yanase H, Kataoka K. Continuous monitoring and regulating of brain temperature in the conscious and freely moving ischemic gerbil: effect of MK-801 on delayed neuronal death in hippocampal CA1. J Neurosci Res. 1997;47(4):440–8.

    Article  CAS  PubMed  Google Scholar 

  102. Pohorecki R, Becker GL, Reilly PJ, Landers DF. Ischemic brain injury in vitro: protective effects of NMDA receptor antagonists and calmidazolium. Brain Res. 1990;528(1):133–7.

    Article  CAS  PubMed  Google Scholar 

  103. Cai J, Hu Y, Li W, Li L, Li S, Zhang M, et al. The neuroprotective effect of propofol against brain ischemia mediated by the glutamatergic signaling pathway in rats. Neurochem Res. 2011;36(10):1724–31.

    Article  CAS  PubMed  Google Scholar 

  104. Basu S, Miclescu A, Sharma H, Wiklund L. Propofol mitigates systemic oxidative injury during experimental cardiopulmonary cerebral resuscitation. Prostaglandins Leukot Essent Fatty Acids. 2011;84(5–6):123–30.

    Article  CAS  PubMed  Google Scholar 

  105. Engelhard K, Werner C, Eberspacher E, Pape M, Blobner M, Hutzler P, et al. Sevoflurane and propofol influence the expression of apoptosis-regulating proteins after cerebral ischaemia and reperfusion in rats. Eur J Anaesthesiol. 2004;21(7):530–7.

    Article  CAS  PubMed  Google Scholar 

  106. Wang W, Lu R, Feng DY, Liang LR, Liu B, Zhang H. Inhibition of microglial activation contributes to propofol-induced protection against post-cardiac arrest brain injury in rats. J Neurochem. 2015;134(5):892–903.

    Article  CAS  PubMed  Google Scholar 

  107. Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One. 2012;7(4):e35324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pittman JE, Sheng H, Pearlstein R, Brinkhous A, Dexter F, Warner DS. Comparison of the effects of propofol and pentobarbital on neurologic outcome and cerebral infarct size after temporary focal ischemia in the rat. Anesthesiology. 1997;87(5):1139–44.

    Article  CAS  PubMed  Google Scholar 

  109. Wang H, Luo M, Li C, Wang G. Propofol post-conditioning induced long-term neuroprotection and reduced internalization of AMPAR GluR2 subunit in a rat model of focal cerebral ischemia/reperfusion. J Neurochem. 2011;119(1):210–9.

    Article  CAS  PubMed  Google Scholar 

  110. Kochs E, Hoffman WE, Werner C, Thomas C, Albrecht RF, Schulte am Esch J. The effects of propofol on brain electrical activity, neurologic outcome, and neuronal damage following incomplete ischemia in rats. Anesthesiology. 1992;76(2):245–52.

    Article  CAS  PubMed  Google Scholar 

  111. Ito H, Watanabe Y, Isshiki A, Uchino H. Neuroprotective properties of propofol and midazolam, but not pentobarbital, on neuronal damage induced by forebrain ischemia, based on the GABAA receptors. Acta Anaesthesiol Scand. 1999;43(2):153–62.

    Article  CAS  PubMed  Google Scholar 

  112. Yamasaki T, Nakakimura K, Matsumoto M, Xiong L, Ishikawa T, Sakabe T. Effects of graded suppression of the EEG with propofol on the neurological outcome following incomplete cerebral ischaemia in rats. Eur J Anaesthesiol. 1999;16(5):320–9.

    Article  CAS  PubMed  Google Scholar 

  113. Ichinose K, Okamoto T, Tanimoto H, Taguchi H, Tashiro M, Sugita M, et al. A moderate dose of propofol and rapidly induced mild hypothermia with extracorporeal lung and heart assist (ECLHA) improve the neurological outcome after prolonged cardiac arrest in dogs. Resuscitation. 2006;70(2):275–84.

    Article  CAS  PubMed  Google Scholar 

  114. Tsai YC, Huang SJ, Lai YY, Chang CL, Cheng JT. Propofol does not reduce infarct volume in rats undergoing permanent middle cerebral artery occlusion. Acta Anaesthesiol Sin. 1994;32(2):99–104.

    CAS  PubMed  Google Scholar 

  115. Young Y, Menon DK, Tisavipat N, Matta BF, Jones JG. Propofol neuroprotection in a rat model of ischaemia reperfusion injury. Eur J Anaesthesiol. 1997;14(3):320–6.

    Article  CAS  PubMed  Google Scholar 

  116. Lasarzik I, Winkelheide U, Stallmann S, Orth C, Schneider A, Tresch A, et al. Assessment of postischemic neurogenesis in rats with cerebral ischemia and propofol anesthesia. Anesthesiology. 2009;110(3):529–37.

    Article  CAS  PubMed  Google Scholar 

  117. Zeng X, Wang H, Xing X, Wang Q, Li W. Dexmedetomidine protects against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats. PLoS One. 2016;11(3):e0151620.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Maier C, Steinberg GK, Sun GH, Zhi GT, Maze M. Neuroprotection by the alpha-2 adrenoreceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology 1993;79(2):306–12.

  119. Nakano T, Okamoto H. Dexmedetomidine-induced cerebral hypoperfusion exacerbates ischemic brain injury in rats. J Anesth. 2009;23(3):378–84.

    Article  PubMed  Google Scholar 

  120. Soonthon-Brant V, Patel PM, Drummond JC, Cole DJ, Kelly PJ, Watson M. Fentanyl does not increase brain injury after focal cerebral ischemia in rats. Anesth Analg. 1999;88(1):49–55.

    CAS  PubMed  Google Scholar 

  121. Drummond JC, Cole DJ, Patel PM, Reynolds LW. Focal cerebral ischemia during anesthesia with etomidate, isoflurane, or thiopental: a comparison of the extent of cerebral injury. Neurosurgery. 1995;37(4):742–8 .discussion 8-9

    Article  CAS  PubMed  Google Scholar 

  122. Yuan T, Li Z, Li X, Yu G, Wang N, Yang X. Lidocaine attenuates lipopolysaccharide-induced inflammatory responses in microglia. J Surg Res. 2014;192(1):150–62.

    Article  CAS  PubMed  Google Scholar 

  123. Block L, Jorneberg P, Bjorklund U, Westerlund A, Biber B, Hansson E. Ultralow concentrations of bupivacaine exert anti-inflammatory effects on inflammation-reactive astrocytes. Eur J Neurosci. 2013;38(11):3669–78.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Upton RN, Rasmussen M, Grant C, Martinez AM, Cold GE, Ludbrook GL. Pharmacokinetics and pharmacodynamics of indomethacin: effects on cerebral blood flow in anaesthetized sheep. Clin Exp Pharmacol Physiol. 2008;35(3):317–23.

    Article  CAS  PubMed  Google Scholar 

  125. Park EM, Cho BP, Volpe BT, Cruz MO, Joh TH, Cho S. Ibuprofen protects ischemia-induced neuronal injury via up-regulating interleukin-1 receptor antagonist expression. Neuroscience. 2005;132(3):625–31.

    Article  CAS  PubMed  Google Scholar 

  126. Cho HJ, Staikopoulos V, Furness JB, Jennings EA. Inflammation-induced increase in hyperpolarization-activated, cyclic nucleotide-gated channel protein in trigeminal ganglion neurons and the effect of buprenorphine. Neuroscience. 2009;162(2):453–61.

    Article  CAS  PubMed  Google Scholar 

  127. Jacobsen KR, Fauerby N, Raida Z, Kalliokoski O, Hau J, Johansen FF, et al. Effects of buprenorphine and meloxicam analgesia on induced cerebral ischemia in C57BL/6 male mice. Comp Med. 2013;63(2):105–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yulug B, Cam E, Yildiz A, Kilic E. Buprenorphine does not aggravate ischemic neuronal injury in experimental focal cerebral ischemia. J Neuropsychiatry Clin Neurosci. 2007;19(3):331–4.

    Article  CAS  PubMed  Google Scholar 

  129. Bhardwaj A, Castro IA, Alkayed NJ, Hurn PD, Kirsch JR. Anesthetic choice of halothane versus propofol: impact on experimental perioperative stroke. Stroke. 2001;32(8):1920–5.

    Article  CAS  PubMed  Google Scholar 

  130. Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke KF, Isaev NK, et al. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke. 2002;33(7):1889–98.

    Article  CAS  PubMed  Google Scholar 

  131. Payne RS, Akca O, Roewer N, Schurr A, Kehl F. Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res. 2005;1034(1–2):147–52.

    Article  CAS  PubMed  Google Scholar 

  132. Ding XD, Zheng NN, Cao YY, Zhao GY, Zhao P. Dexmedetomidine preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest. Int J Neurosci. 2016;126(3):249–56.

    Article  CAS  PubMed  Google Scholar 

  133. Liu JH, Feng D, Zhang YF, Shang Y, Wu Y, Li XF, et al. Chloral hydrate preconditioning protects against ischemic stroke via upregulating Annexin A1. CNS Neurosci Ther. 2015;21(9):718–26.

    Article  CAS  PubMed  Google Scholar 

  134. Li L, Zuo Z. Isoflurane preconditioning improves short-term and long-term neurological outcome after focal brain ischemia in adult rats. Neuroscience. 2009;164(2):497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ye R, Yang Q, Kong X, Li N, Zhang Y, Han J, et al. Sevoflurane preconditioning improves mitochondrial function and long-term neurologic sequelae after transient cerebral ischemia: role of mitochondrial permeability transition. Crit Care Med. 2012;40(9):2685–93.

    Article  CAS  PubMed  Google Scholar 

  136. Li C, Han D, Zhang F, Zhou C, Yu HM, Zhang GY. Preconditioning ischemia attenuates increased neurexin-neuroligin1-PSD-95 interaction after transient cerebral ischemia in rat hippocampus. Neurosci Lett. 2007;426(3):192–7.

    Article  CAS  PubMed  Google Scholar 

  137. Zhao P, Ji G, Xue H, Yu W, Zhao X, Ding M, et al. Isoflurane postconditioning improved long-term neurological outcome possibly via inhibiting the mitochondrial permeability transition pore in neonatal rats after brain hypoxia-ischemia. Neuroscience. 2014;280:193–203.

    Article  CAS  PubMed  Google Scholar 

  138. Lai Z, Zhang L, Su J, Cai D, Xu Q. Sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage rats via the PI3K/Akt-mPTP pathway. Brain Res. 2016;1630:25–37.

    Article  CAS  PubMed  Google Scholar 

  139. Cole DJ, Drummond JC, Shapiro HM, Zornow MH. Influence of hypotension and hypotensive technique on the area of profound reduction in cerebral blood flow during focal cerebral ischaemia in the rat. Br J Anaesth. 1990;64(4):498–502.

    Article  CAS  PubMed  Google Scholar 

  140. Sukhotinsky I, Dilekoz E, Moskowitz MA, Ayata C. Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat. J Cereb Blood Flow Metab. 2008;28(7):1369–76.

    Article  PubMed  Google Scholar 

  141. Sukhotinsky I, Yaseen MA, Sakadzic S, Ruvinskaya S, Sims JR, Boas DA, et al. Perfusion pressure-dependent recovery of cortical spreading depression is independent of tissue oxygenation over a wide physiologic range. J Cereb Blood Flow Metab. 2010;30(6):1168–77.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Warner.

Ethics declarations

Supported in part by the National Institutes of Health (1R21NS087157–02).

Conflict of Interest

None.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, U., Sheng, H., Ayata, C. et al. Anesthesia in Experimental Stroke Research. Transl. Stroke Res. 7, 358–367 (2016). https://doi.org/10.1007/s12975-016-0491-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0491-5

Keywords

Navigation