Skip to main content

Advertisement

Log in

Improving Reperfusion Therapies in the Era of Mechanical Thrombectomy

  • SI: Challenges and Controversies in Translational Stroke Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Recent positive clinical trials using mechanical thrombectomy proved that endovascular recanalization is an effective treatment for patients with acute stroke secondary to large vessel occlusions. The trials offer definite evidence that in acute ischemia recanalization is a powerful predictor of good outcome. However, even in the era of rapid and effective recanalization using endovascular approaches, the percentage of patients with good outcomes varies between 33 and 71 %. In addition, the number of patients who are eligible for endovascular thrombectomy is small and usually based on having salvageable tissue on imaging. There is therefore room for improvement to both enhance the effectiveness of current practice and expand treatment to a larger subset of stroke patients. In this review, we highlight some of the most promising approaches to improve endovascular therapy by combining with strategies to enhance collateral perfusion and vascular protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11–20.

    Article  PubMed  Google Scholar 

  2. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–30.

    Article  CAS  PubMed  Google Scholar 

  3. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–18.

    Article  CAS  PubMed  Google Scholar 

  4. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372:2285–95.

    Article  CAS  PubMed  Google Scholar 

  5. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372:2296–306.

    Article  CAS  PubMed  Google Scholar 

  6. Dirnagl U, Endres M. Found in translation: preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke. 2014;45:1510–8.

    Article  PubMed  Google Scholar 

  7. Cumberland Consensus Working Group 1, Cheeran B, Cohen L, Dobkin B, Ford G, Greenwood R, et al. The future of restorative neurosciences in stroke: driving the translational research pipeline from basic science to rehabilitation of people after stroke. Neurorehabil Neural Repair. 2009;23:97–107.

    Article  Google Scholar 

  8. Fisher M, Bastan B. Identifying and utilizing the ischemic penumbra. Neurology. 2012;79:S79–85.

    Article  PubMed  Google Scholar 

  9. Paciaroni M, Caso V, Agnelli G. The concept of ischemic penumbra in acute stroke and therapeutic opportunities. Eur Neurol. 2009;61:321–30.

    Article  PubMed  Google Scholar 

  10. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581–7.

    Article  Google Scholar 

  11. Ciccone A, Valvassori L, Nichelatti M, Sgoifo A, Ponzio M, Sterzi R, et al. Endovascular treatment for acute ischemic stroke. N Engl J Med. 2013;368:2433–4.

    Article  PubMed  Google Scholar 

  12. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, et al. Interventional Management of Stroke (IMS) III Investigators Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013;368:893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368:914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liebeskind DS, Jahan R, Nogueira RG, Zaidat OO, Saver JL, SWIFT Investigators. Impact of collaterals on successful revascularization in solitaire FR with the intention for thrombectomy. Stroke. 2014;45:2036–40.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lima FO, Furie KL, Silva GS, Lev MH, Camargo EC, Singhal AB, et al. The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke. 2010;41:2316–22.

  16. Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, et al. Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke. 2011;42:693–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sheth SA, Sanossian N, Hao Q, Starkman S, Ali LK, Kim D, et al. Collateral flow as causative of good outcomes in endovascular stroke therapy. J Neurointerv Surg. 2014. doi:10.1136/neurintsurg-2014-011438.

  18. Marks MP, Lansberg MG, Mlynash M, Olivot JM, Straka M, Kemp S, et al. Diffusion and perfusion imaging evaluation for understanding stroke evolution 2 investigators. Effect of collateral blood flow on patients undergoing endovascular therapy for acute ischemic stroke. Stroke. 2014;45:1035–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bang OY, Saver JL, Buck BH, Alger JR, Starkman S, Ovbiagele B, et al. Impact of collateral flow on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2008;79:625–9.

    Article  CAS  PubMed  Google Scholar 

  20. Campbell BC, Christensen S, Tress BM, Churilov L, Desmond PM, Parsons MW, et al. Failure of collateral blood flow is associated with infarct growth in ischemic stroke. J Cereb Blood Flow Metab. 2013;33:1168–72.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, et al. Collateral flow averts hemorrhagic transformation after endovascular therapy for acute ischemic stroke. Stroke. 2011;42:2235–9.

    Article  PubMed  Google Scholar 

  22. Brozici M, van der Zwan A, Hillen B. Anatomy and functionality of leptomeningieal anastomoses: a review. Stroke. 2003;34:2750–62.

    Article  PubMed  Google Scholar 

  23. Shuaib A, Butcher K, Mohammad AA, Saqqur M, Liebeskind DS. Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol. 2011;10:909–21.

    Article  PubMed  Google Scholar 

  24. Zhang H, Prabhakar P, Sealock R, Faber JE. Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke. J Cereb Blood Flow Metab. 2010;30:923–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan S-L, Sweet JG, Bishop N, Cipolla MJ. Pial collateral reactivity during hypertension and aging: understanding the function of collaterals for stroke therapy. Stroke. 2016.

  26. Hedera P, Bujdáková J, Traubner P, Pancák J. Stroke risk factors and development of collateral flow in carotid occlusive disease. Acta Neurol Scand. 1998;98:182–6.

    Article  CAS  PubMed  Google Scholar 

  27. Letourneur A, Roussel S, Toutain J, Bernaudin M, Touzani O. Impact of genetic and renovascular chronic arterial hypertension on the acute spatiotemporal evolution of the ischemic penumbra: a sequential study with MRI in the rat. J Cereb Blood Flow Metab. 2011;31:504–13.

    Article  PubMed  Google Scholar 

  28. McCabe C, Gallagher L, Gsell W, Graham D, Dominiczak AF, Macrae IM. Differences in the evolution of the ischemic penumbra in stroke-prone spontaneously hypertensive and Wistar-Kyoto rats. Stroke. 2009;40:3864–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Satoh K, Fukumoto Y, Shimokawa H. Rho-kinase: important new therapeutic target in cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2011;301:H287–96.

    Article  CAS  PubMed  Google Scholar 

  30. Faraci FM, Lamping KG, Modrick ML, Ryan MJ, Sigmund CD, Didion SP. Cerebral vascular effects of angiotensin II: new insights from genetic models. J Cereb Blood Flow Metab. 2006;26:449–55.

    Article  CAS  PubMed  Google Scholar 

  31. Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000;351:95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laufs U, Endres M, Stagliano N, Amin-Hanjani S, Chui DS, Yang SX, et al. Neuroprotection mediated by changes in the endothelial actin cytoskeleton. J Clin Invest. 2000;106:15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nishikawa Y, Doi M, Koji T, Watanabe M, Kimura S, Kawasaki S, et al. The role of rho and rho-dependent kinase in serotonin-induced contraction observed in bovine middle cerebral artery. Tohoku J Exp Med. 2003;201:239–49.

    Article  CAS  PubMed  Google Scholar 

  34. Shin HK, Huang PL, Ayata C. Rho-kinase inhibition improves ischemic perfusion deficit in hyperlipidemic mice. J Cereb Blood Flow Metab. 2014;34:284–7.

    Article  CAS  PubMed  Google Scholar 

  35. Shin HK, Salomone S, Potts EM, Lee SW, Millican E, Noma K, et al. Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms. J Cereb Blood Flow Metab. 2007;27:998–1009.

    CAS  PubMed  Google Scholar 

  36. Wang QM, Liao JK. ROCKs as immunomodulators of stroke. Expert Opin Ther Targets. 2012;16:1013–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu J, Li J, Hu H, Liu P, Fang Y, Wu D. Rho-kinase inhibitor, fasudil, prevents neuronal apoptosis via the Akt activation and PTEN inactivation in the ischemic penumbra of rat brain. Cell Mol Neurobiol. 2012;32:1187–97.

    Article  CAS  PubMed  Google Scholar 

  38. Ishiguro M, Kawasaki K, Suzuki Y, Ishizuka F, Mishiro K, Egashira Y, et al. A Rho kinase (ROCK) inhibitor, fasudil, prevents matrix metalloproteinase-9-related hemorrhagic transformation in mice treated with tissue plasminogen activator. Neuroscience. 2012;220:302–12.

    Article  CAS  PubMed  Google Scholar 

  39. Lee JH, Zheng Y, von Bornstadt D, Wei Y, Balcioglu A, Daneshmand A, et al. Selective ROCK2 inhibition in focal cerebral ischemia. Ann Clin Transl Neurol. 2014;1:2–14.

    Article  CAS  PubMed  Google Scholar 

  40. Gibson CL, Srivastava K, Sprigg N, Bath PMW, Bayraktutan U. Inhibition of Rho-kinase protects cerebral barrier from ischaemia-evoked injury through modulations of endothelial cell oxidative stress and tight junctions. J Neurochem. 2014;129:816–26.

    Article  CAS  PubMed  Google Scholar 

  41. Gokina N, Park KM, McElroy-Yaggy K, Osol G. Effects of Rho kinase inhibition on cerebral artery myogenic tone and reactivity. J Appl Physiol (1985). 2005;98:1940–8.

    Article  CAS  Google Scholar 

  42. Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium-activated potassium channels and the regulation of vascular tone. Physiology. 2006;21:69–79.

  43. Marrelli SP, Eckmann MS, Hunte MS. Role of endothelial intermediate conductance Kca channels in cerebral EDHF-mediated dilations. Am J Physiol. 2003;285:H1590–9.

  44. Cipolla MJ, Smith J, Kohlmeyer MM, Godfrey JA. SKCa and IKCa Channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. Stroke. 2009;40:1451–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mishra RC, Belke D, Wulff H, Braun AP. SKA-31, a novel activator of SK(Ca) and IK(Ca) channels, increases coronary flow in male and female rat hearts. Cardiovasc Res. 2013;97:339–48.

    Article  CAS  PubMed  Google Scholar 

  46. An H, Ford AL, Vo K, Eldeniz C, Ponisio R, Zhu H, et al. Early changes of tissue perfusion after tissue plasminogen activator in hyperacute ischemic stroke. Stroke. 2011;2:65–72.

    Article  Google Scholar 

  47. Soares BP, Tong E, Hom J, Cheng SC, Bredno J, Boussel L, et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke. 2010;41:e34–40.

    Article  PubMed  Google Scholar 

  48. Busch E, Krüger K, Allegrini PR, Kerskens CM, Gyngell ML, Hoehn-Berlage M, et al. Reperfusion after thrombolytic therapy of embolic stroke in the rat: magnetic resonance and biochemical imaging. J Cereb Blood Flow Metab. 1998;18:407–18.

    Article  CAS  PubMed  Google Scholar 

  49. Garcia JH, Liu KF, Yoshida Y, Chen S, Lian J. Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am J Pathol. 1994;145:728–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab. 2003;23:879–94.

    Article  PubMed  Google Scholar 

  51. del Zoppo GJ, Poeck K, Pessin MS, Wolpert SM, Furlan AJ, Ferbert A, et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol. 1992;32:78–86.

    Article  PubMed  Google Scholar 

  52. Alexandrov AV, Molina CA, Grotta JC, Garami Z, Ford SR, Alvarez-Sabin J, et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004;351:2170–8.

    Article  CAS  PubMed  Google Scholar 

  53. Ribo M, Alvarez-Sabin J, Montaner J, Romero F, Delgado P, Rubiera M, et al. Temporal profile of recanalization after intravenous tissue plasminogen activator: selecting patients for rescue reperfusion techniques. Stroke. 2006;37:1000–4.

    Article  CAS  PubMed  Google Scholar 

  54. Lee KY, Han SW, Kim SH, Nam HS, Ahn SW, Kim DJ, et al. Early recanalization after intravenous administration of recombinant tissue plasminogen activator as assessed by pre- and post-thrombolytic angiography in acute ischemic stroke patients. Stroke. 2007;38:192–3.

    Article  CAS  PubMed  Google Scholar 

  55. Kimura K, Iguchi Y, Shibazaki K, Aoki J, Uemura J. Early recanalization rate of major occluded brain arteries after intravenous tissue plasminogen activator therapy using serial magnetic resonance angiography studies. Eur Neurol. 2009;62:287–92.

    Article  CAS  PubMed  Google Scholar 

  56. Vanacker P, Lambrou D, Eskandari A, Maeder P, Meuli R, Ntaios G, et al. Improving prediction of recanalization in acute large vessel occlusive Stroke. J Thromb Haemost. 2014;12:814–21.

    Article  CAS  PubMed  Google Scholar 

  57. Alexandrov AV, Hall CE, Labiche LA, Wojner AW, Grotta JC. Ischemic stunning of the brain: early recanalization without immediate clinical improvement in acute ischemic stroke. Stroke. 2004;35:449–52.

    Article  PubMed  Google Scholar 

  58. del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke. 1991;22:1276–83.

    Article  PubMed  Google Scholar 

  59. Hallenbeck JM, Dutka AJ, Tanishima T, Kochanek PM, Kumaroo KK, Thompson CB, et al. Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke. 1986;17:246–53.

    Article  CAS  PubMed  Google Scholar 

  60. Faraci FM, Mayhan WG, Heistad DD. Segmental vascular responses to acute hypertension in cerebrum and brain stem. Am J Physiol. 1987;252:H738–42.

    CAS  PubMed  Google Scholar 

  61. Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990;66:8–17.

    Article  CAS  PubMed  Google Scholar 

  62. Faraci FM, Mayhan WG, Schmid PG, Heistad DD. Effects of arginine vasopressin on cerebral microvascular pressure. Am J Physiol. 1988;255:H70–6.

    CAS  PubMed  Google Scholar 

  63. Cipolla MJ, Chan SL, Sweet J, Tavares MJ, Gokina N, Brayden JE. Postischemic reperfusion causes smooth muscle calcium sensitization and vasoconstriction of parenchymal arterioles. Stroke. 2014;45:2425–30.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cipolla MJ, Sweet J, Chan SL, Tavares MJ, Gokina N, Brayden JE. Increased pressure-induced tone in rat parenchymal arterioles vs. middle cerebral arteries: role of ion channels and calcium sensitivity. J Appl Physiol (1985). 2014;117:53–9.

    Article  CAS  Google Scholar 

  65. Baumbach GL, Heistad DD. Regional, segmental, and temporal heterogeneity of cerebral vascular autoregulation. Ann Biomed Eng. 1985;13:303–10.

    Article  CAS  PubMed  Google Scholar 

  66. Baumbach GL, Mayhan WG, Heistad DD. Protection of the blood–brain barrier by hypercapnia during acute hypertension. Am J Physiol. 1986;251:H282–7.

    CAS  PubMed  Google Scholar 

  67. Ronaldson PT, Davis TP. Blood–brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des. 2012;18:3624–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ergul A, Kelly-Cobbs A, Abdalla M, Fagan SC. Cerebrovascular complications of diabetes: focus on stroke. Endocr Metab Immune Disord Drug Targets. 2012;12(2):148–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cipolla MJ, Huang Q, Sweet JG. Inhibition of protein kinase Cβ reverses increased blood–brain barrier permeability during hyperglycemic stroke and prevents edema formation in vivo. Stroke. 2011;42:3252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kumai Y, Ooboshi H, Ibayashi S, Ishikawa E, Sugimori H, Kamouchi M, et al. Postischemic gene transfer of soluble Flt-1 protects against brain ischemia with marked attenuation of blood–brain barrier permeability. J Cereb Blood Flow Metab. 2007;27(6):1152–60.

    Article  CAS  PubMed  Google Scholar 

  71. Lyden PD. Hemorrhagic transformation during thrombolytic therapy and reperfusion: effects of age, blood pressure, and matrix metalloproteinases. J Stroke Cerebrovasc Dis. 2013;22(4):532–8.

    Article  PubMed  Google Scholar 

  72. Wang M, Joshi S, Emerson RG. Comparison of intracarotid and intravenous propofol for electrocerebral silence in rabbits. Anesthesiology. 2003;99:904–10.

    Article  PubMed  Google Scholar 

  73. Yamashita J, Handa H, Tokuriki Y, Ha YS, Otsuka SI, Suda K, et al. Intra-arterial ACNU therapy for malignant brain tumors. Experimental studies and preliminary clinical results. J Neurosurg. 1983;59:424–30.

    Article  CAS  PubMed  Google Scholar 

  74. Joshi S, Young WL, Pile-Spellman J, Duong DH, Vang MC, Hacein-Bey L, et al. The feasibility of intracarotid adenosine for the manipulation of human cerebrovascular resistance. Anesth Analg. 1998;87:1291–8.

    CAS  PubMed  Google Scholar 

  75. Joshi S, Meyers PM, Ornstein E. Intracarotid delivery of drugs: the potential and the pitfalls. Anesthesiology. 2008;109:543–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal. 2011;14:1505–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Duong H, Hacein-Bey L, Vang MC, Pile-Spellman J, Joshi S, Young WL. Management of cerebral arterial occlusion during endovascular treatment of cerebrovascular disease. Problems in Anesthesia. 1997;9:99–111.

    Google Scholar 

  78. Hillen B. The variability of the circle of Willis: univariate and bivariate analysis. Acta Morphol Neerl Scand. 1986;24:87–101.

    CAS  PubMed  Google Scholar 

  79. Hillen B, Hoogstraten HW, Van Overbeeke JJ, Van der Zwan A. Functional anatomy of the circulus arteriosus cerebri (WillisII). Bull Assoc Anat. 1991;75:123–6.

    CAS  Google Scholar 

  80. Hillen B, Drinkenburg BA, Hoogstraten HW, Post L. Analysis of flow and vascular resistance in a model of the circle of Willis. J Biomechan. 1988;21:807–14.

    Article  CAS  Google Scholar 

  81. Dedrick RL. Arterial drug infusion: pharmacokinetic problems and pitfalls. J Natl Cancer Inst. 1988;80:84–9.

    Article  CAS  PubMed  Google Scholar 

  82. Cipolla MJ. The cerebral circulation. In: Integrated systems physiology—from molecule to function. Morgan & Claypool Life Sciences Publishers:San Rafael, 2009

  83. Butt AM. Effect of inflammatory agents on electrical resistance across the blood–brain barrier in pial microvessels of anaesthetized rats. Brain Res. 1995;696:145–50.

    Article  CAS  PubMed  Google Scholar 

  84. Giraud M, Cho TH, Nighoghossian N, Maucort-Boulch D, Deiana G, Østergaard L, et al. Early blood brain barrier changes in acute ischemic stroke: a sequential MRI study. J Neuroimaging. 2015;25:959–63.

    Article  PubMed  Google Scholar 

  85. Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes mellitus and blood–brain barrier dysfunction: an overview. J Pharmacovigil. 2014;2:125.

    PubMed  PubMed Central  Google Scholar 

  86. Won SJ, Tang XN, Suh SW, Yenari MA, Swanson RA. Hyperglycemia promotes tissue plasminogen activator-induced hemorrhage by increasing superoxide production. Ann Neurol. 2011;70:583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang XN, Cairns B, Kim JY, Yenari MA. NADPH oxidase in stroke and cerebrovascular disease. Neurol Res. 2012;34:338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Obrist WD, Thompson Jr HK, Wang HS, Wilkinson WE. Regional cerebral blood flow estimated by 133xenon inhalation. Stroke. 1975;6:245–56.

    Article  CAS  PubMed  Google Scholar 

  89. Obrist WD, Dolinskas CA, Jaggi JL, Cruz J, Steiman DL. Serial cerebral blood flow studies in acute head injury: application of the intravenous 133 Xe method. 1983. p. 145–50.

  90. Sanelli PC, Nicola G, Tsiouris AJ, Ougorets I, Knight C, Frommer B, et al. Reproducibility of post processing of quantitative CT perfusion maps. AJR Am J Roentgenol. 2007;188:213–8.

    Article  PubMed  Google Scholar 

  91. Morales Palomares S, Cipolla MJ. Vascular protection following ischemia and reperfusion. J Neurol Neurophysiol. 2011;20:S1–4.

    Google Scholar 

  92. Cipolla MJ, McCall A, Lessov N, Porter J. Reperfusion decreases myogenic reactivity and alters middle cerebral artery function after focal cerebral ischemia in rats. Stroke. 1997;28:176–80.

    Article  CAS  PubMed  Google Scholar 

  93. Linfante I, Walker GR, Castonguay AC, Dabus G, Starosciak AK, Yoo AJ, et al. Predictors of mortality in acute ischemic stroke intervention: analysis of the north American solitaire acute stroke registry. Stroke. 2015;46:2305–8.

    Article  PubMed  Google Scholar 

  94. Linfante I, Starosciak AK, Walker GR, Dabus G, Castonguay AC, Gupta R, et al. Predictors of poor outcome despite recanalization: a multiple regression analysis of the NASA registry. J NeuroIntervent Surg. 2015;8(3):1–6. doi:10.1136/neurintsurg-2014-011525.

    Google Scholar 

  95. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, et al. Recombinant tissue plasminogen activator for acute ischaemic stroke:an updated systematic review and meta-analysis. Lancet. 2012;379:2364–72.

  96. Saver JL, Fonarow GC, Smith EE, Reeves MJ, Grau-Sepulveda MV, Pan W, et al. Time to treatment with intravenous plasminogen activator and outcome from acute ischemic stroke. JAMA. 2013;309:2480–8.

  97. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013;368:893–903.

  98. Hussein HM, Georgiadis AL, Vazquez G, Miley JT, Memon MZ, Mohammad YM, et al. Occurrence and predictorsof futile recanalization following endovascular treatment among patients with acute ischemic stroke. AJNR Am J Neuroradiol. 2010;31:454–458.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn J. Cipolla.

Ethics declarations

Funding

M. J. C. is funded by the National Institutes of Health grants R01 NS045940, R01 NS093289, P01 HL095488, the Preeclampsia Foundation, and the Totman Medical Research Trust.

Conflict of Interest

I. L. is consultant for Medtronic/Covidien, Stryker, Codman, Penumbra, and stockholder for Surpass and InNeuroCo.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linfante, I., Cipolla, M.J. Improving Reperfusion Therapies in the Era of Mechanical Thrombectomy. Transl. Stroke Res. 7, 294–302 (2016). https://doi.org/10.1007/s12975-016-0469-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0469-3

Keywords

Navigation