Skip to main content

Advertisement

Log in

Plasticity of Cerebrovascular Smooth Muscle Cells After Subarachnoid Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) is most often followed by a delayed phase of cerebral ischemia which is associated with high morbidity and mortality rates. The causes underlying this delayed phase are still unsettled, but are believed to include cerebral vasospasm, cortical spreading depression, inflammatory reactions, and microthrombosis. Additionally, a large body of evidence indicates that vascular plasticity plays an important role in SAH pathophysiology, and this review aims to summarize our current knowledge on the phenotypic changes of vascular smooth muscle cells of the cerebral vasculature following SAH. In light of the emerging view that the whole cerebral vasculature and the cells of the brain parenchyma should be viewed as one integrated neurovascular network, phenotypical changes are discussed both for the cerebral arteries and the microvasculature. Furthermore, the intracellular signaling involved in the vascular plasticity is discussed with a focus on the Raf–MEK1/2–ERK1/2 pathway which seems to play a crucial role in SAH pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Litterature search strategy and selection criteria: Medline and PubMed were searched for papers in English with the following search terms: cerebral arterioles AND SAH, cerebral arterioles AND SAH AND vasoconstrictor, microvessel AND SAH, microvessel AND SAH AND vasoconstrictor, SAH AND SMC AND vasoconstrictor, SAH AND inflammation AND SMC. The last search was performed on October 14, 2013.

References

  1. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468:232–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kleinfeld D, Blinder P, Drew PJ, Driscoll JD, Muller A, Tsai PS, et al. A guide to delineate the logic of neurovascular signaling in the brain. Front Neuroenerg. 2011;3:1.

    Article  Google Scholar 

  3. Lecrux C, Hamel E. The neurovascular unit in brain function and disease. Acta Physiol (Oxf). 2011;203:47–59.

    Article  CAS  Google Scholar 

  4. Edvinsson L, Krause DN. Cerebral blood flow and metabolism. 2nd ed. Philadelphia: Lippincott, Williams and Wilkins; 2002.

    Google Scholar 

  5. Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ. The vascular neural network—a new paradigm in stroke pathophysiology. Nat Rev Neurol. 2012;8:711–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Edvinsson LI, Povlsen GK. Vascular plasticity in cerebrovascular disorders. J Cereb Blood Flow Metab. 2011;31:1554–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Edvinsson L, Povlsen GK. Late cerebral ischaemia after subarachnoid haemorrhage: is cerebrovascular receptor upregulation the mechanism behind? Acta Physiol (Oxf). 2011;203:209–24.

    Article  CAS  Google Scholar 

  8. Nishizawa S, Laher I. Signaling mechanisms in cerebral vasospasm. Trends Cardiovasc Med. 2005;15:24–34.

    Article  CAS  PubMed  Google Scholar 

  9. Tomasello F, Albanese V, Picozzi P, Spadaro A, Conforti P. Relation of cerebral vasospasm to operative findings of subarachnoid blood around ruptured aneurysms. Acta Neurochir (Wien). 1982;60:55–62.

    Article  CAS  Google Scholar 

  10. Povlsen GK, Johansson SE, Larsen CC, Samraj AK, Edvinsson L. Early events triggering delayed vasoconstrictor receptor upregulation and cerebral ischemia after subarachnoid hemorrhage. BMC Neurosci. 2013;14:34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Prunell GF, Mathiesen T, Svendgaard NA. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport. 2002;13:2553–6.

    Article  PubMed  Google Scholar 

  12. Hansen-Schwartz J, Hoel NL, Zhou M, Xu CB, Svendgaard NA, Edvinsson L. Subarachnoid hemorrhage enhances endothelin receptor expression and function in rat cerebral arteries. Neurosurgery. 2003;52:1188–94.

    Article  PubMed  Google Scholar 

  13. Hansen-Schwartz J, Hoel NL, Xu CB, Svendgaard NA, Edvinsson L. Subarachnoid hemorrhage-induced upregulation of the 5-HT1B receptor in cerebral arteries in rats. J Neurosurg. 2003;99:115–20.

    Article  CAS  PubMed  Google Scholar 

  14. Ansar S, Edvinsson L. Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage. Stroke. 2008;39:185–90.

    Article  CAS  PubMed  Google Scholar 

  15. Ansar S, Larsen C, Maddahi A, Edvinsson L. Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries. Brain Res. 2010;1316:163–72.

    Article  CAS  PubMed  Google Scholar 

  16. Ansar S, Vikman P, Nielsen M, Edvinsson L. Cerebrovascular ETB, 5-HT1B, and AT1 receptor upregulation correlates with reduction in regional CBF after subarachnoid hemorrhage. Am J Physiol Heart Circ Physiol. 2007;293:H3750–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ansar S, Eftekhari S, Waldsee R, Nilsson E, Nilsson O, Saveland H, et al. MAPK signaling pathway regulates cerebrovascular receptor expression in human cerebral arteries. BMC Neurosci. 2013;14:12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Vikman P, Edvinsson L. Gene expression profiling in the human middle cerebral artery after cerebral ischemia. Eur J Neurol. 2006;13:1324–32.

    Article  CAS  PubMed  Google Scholar 

  19. Krishna M, Narang H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci. 2008;65:3525–44.

    Article  CAS  PubMed  Google Scholar 

  20. Beg SA, Hansen-Schwartz JA, Vikman PJ, Xu CB, Edvinsson LI. ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET(B) and 5-HT(1B) receptor upregulation after subarachnoid hemorrhage in rat. J Cereb Blood Flow Metab. 2006;26:846–56.

    Article  CAS  PubMed  Google Scholar 

  21. Larsen CC, Povlsen GK, Rasmussen MN, Edvinsson L. Improvement in neurological outcome and abolition of cerebrovascular endothelin B and 5-hydroxytryptamine 1B receptor upregulation through mitogen-activated protein kinase kinase 1/2 inhibition after subarachnoid hemorrhage in rats. J Neurosurg. 2011;114:1143–53.

    Article  CAS  PubMed  Google Scholar 

  22. Ansar S, Maddahi A, Edvinsson L. Inhibition of cerebrovascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage. BMC Neurosci. 2011;12:107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Maddahi A, Povlsen GK, Edvinsson L. Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J Neuroinflammation. 2012;9:274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796–808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, Ley KF, et al. Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery. 2003;53:123–33.

    Article  PubMed  Google Scholar 

  26. Sehba FA, Bederson JB. Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28:381–98.

    Article  CAS  PubMed  Google Scholar 

  27. Gallia GL, Tamargo RJ. Leukocyte-endothelial cell interactions in chronic vasospasm after subarachnoid hemorrhage. Neurol Res. 2006;28:750–8.

    Article  CAS  PubMed  Google Scholar 

  28. Konsman JP, Drukarch B, Van Dam AM. (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci (Lond). 2007;112:1–25.

    Article  CAS  Google Scholar 

  29. Tergaonkar V. NFkappaB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol. 2006;38:1647–53.

    Article  CAS  PubMed  Google Scholar 

  30. Vikman P, Ansar S, Edvinsson L. Transcriptional regulation of inflammatory and extracellular matrix-regulating genes in cerebral arteries following experimental subarachnoid hemorrhage in rats. Laboratory investigation. J Neurosurg. 2007;107:1015–22.

    Article  CAS  PubMed  Google Scholar 

  31. Vikman P, Ansar S, Henriksson M, Stenman E, Edvinsson L. Cerebral ischemia induces transcription of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Exp Brain Res. 2007;183:499–510.

    Article  CAS  PubMed  Google Scholar 

  32. Vecchione C, Frati A, Di PA, Cifelli G, Carnevale D, Gentile MT, et al. Tumor necrosis factor-alpha mediates hemolysis-induced vasoconstriction and the cerebral vasospasm evoked by subarachnoid hemorrhage. Hypertension. 2009;54:150–6.

    Article  CAS  PubMed  Google Scholar 

  33. Uno H, Matsuyama T, Akita H, Nishimura H, Sugita M. Induction of tumor necrosis factor-alpha in the mouse hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab. 1997;17:491–9.

    Article  CAS  PubMed  Google Scholar 

  34. Eder C. Mechanisms of interleukin-1beta release. Immunobiology. 2009;214:543–53.

    Article  CAS  PubMed  Google Scholar 

  35. Maddahi A, Ansar S, Chen Q, Edvinsson L. Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab. 2011;31:144–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Moriwaki T, Takagi Y, Sadamasa N, Aoki T, Nozaki K, Hashimoto N. Impaired progression of cerebral aneurysms in interleukin-1beta-deficient mice. Stroke. 2006;37:900–5.

    Article  CAS  PubMed  Google Scholar 

  37. Heinrich PC, Horn F, Graeve L, Dittrich E, Kerr I, Muller-Newen G, et al. Interleukin-6 and related cytokines: effect on the acute phase reaction. Z Ernahrungswiss. 1998;37 Suppl 1:43–9.

    CAS  PubMed  Google Scholar 

  38. Tuttolomondo A, Di RD, di Sciacca R, Pinto A, Licata G. Inflammatory cytokines in acute ischemic stroke. Curr Pharm Des. 2008;14:3574–89.

    Article  CAS  PubMed  Google Scholar 

  39. Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, Schutt S, et al. Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry. 2001;70:534–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Osuka K, Suzuki Y, Tanazawa T, Hattori K, Yamamoto N, Takayasu M, et al. Interleukin-6 and development of vasospasm after subarachnoid haemorrhage. Acta Neurochir (Wien). 1998;140:943–51.

    Article  CAS  Google Scholar 

  41. Vikman P, Beg S, Khurana TS, Hansen-Schwartz J, Edvinsson L. Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat. J Neurosurg. 2006;105:438–44.

    Article  CAS  PubMed  Google Scholar 

  42. Iadecola C, Zhang F, Xu S, Casey R, Ross ME. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab. 1995;15:378–84.

    Article  CAS  PubMed  Google Scholar 

  43. Moro MA, Cardenas A, Hurtado O, Leza JC, Lizasoain I. Role of nitric oxide after brain ischaemia. Cell Calcium. 2004;36:265–75.

    Article  CAS  PubMed  Google Scholar 

  44. Iadecola C, Zhang F, Xu X. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol. 1995;268:R286–92.

    CAS  PubMed  Google Scholar 

  45. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 2005;1754:253–62.

    Article  CAS  PubMed  Google Scholar 

  46. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.

    Article  CAS  PubMed  Google Scholar 

  47. Doczi T. The pathogenetic and prognostic significance of blood–brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies. Acta Neurochir (Wien). 1985;77:110–32.

    Article  CAS  Google Scholar 

  48. Doczi T, Joo F, Adam G, Bozoky B, Szerdahelyi P. Blood–brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery. 1986;18:733–9.

    Article  CAS  PubMed  Google Scholar 

  49. Candelario-Jalil E, Yang Y, Rosenberg GA. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience. 2009;158:983–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001;21:7724–32.

    CAS  PubMed  Google Scholar 

  51. Rosell A, Ortega-Aznar A, Alvarez-Sabin J, Fernandez-Cadenas I, Ribo M, Molina CA, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke. 2006;37:1399–406.

    Article  CAS  PubMed  Google Scholar 

  52. Guo Z, Sun X, He Z, Jiang Y, Zhang X, Zhang JH. Matrix metalloproteinase-9 potentiates early brain injury after subarachnoid hemorrhage. Neurol Res. 2010;32:715–20.

    Article  CAS  PubMed  Google Scholar 

  53. Jin D, Sheng J, Yang X, Gao B. Matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human cerebral ruptured and unruptured aneurysm. Surg Neurol. 2007;68 Suppl 2:S11–6.

    Article  PubMed  Google Scholar 

  54. Ahnstedt H, Stenman E, Cao L, Henriksson M, Edvinsson L. Cytokines and growth factors modify the upregulation of contractile endothelin ET(A) and ET(B) receptors in rat cerebral arteries after organ culture. Acta Physiol (Oxf). 2012;205:266–78.

    Article  CAS  Google Scholar 

  55. Rasmussen MNP, Larsen SS, Edvinsson L. Lack of wall tension in rat cerebral arteries cause enhanced endothelin B (ETB) receptor contractile responses. J Cereb Blood Flow Metab. 2011;31(19):515–36.

    Google Scholar 

  56. Rasmussen MN, Hornbak M, Larsen SS, Sheykhzade M, Edvinsson L. Permanent distal occlusion of middle cerebral artery in rat causes local increased ET, 5-HT and AT receptor-mediated contractility downstream of occlusion. J Vasc Res. 2013;50:396–409.

    Article  CAS  PubMed  Google Scholar 

  57. Ansar S, Edvinsson L. Equal contribution of increased intracranial pressure and subarachnoid blood to cerebral blood flow reduction and receptor upregulation after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg. 2009;111:978–87.

    Article  PubMed  Google Scholar 

  58. Prunell GF, Svendgaard NA, Alkass K, Mathiesen T. Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. J Neurosurg. 2005;102:1046–54.

    Article  PubMed  Google Scholar 

  59. Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins III AL, et al. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery. 1998;42:352–60.

    Article  CAS  PubMed  Google Scholar 

  60. Parker BL, Larsen MR, Edvinsson LI, Povlsen GK. Signal transduction in cerebral arteries after subarachnoid hemorrhage—a phosphoproteomic approach. J Cereb Blood Flow Metab. 2013;33:1259–69.

    Article  CAS  PubMed  Google Scholar 

  61. Romer LH, Birukov KG, Garcia JG. Focal adhesions: paradigm for a signaling nexus. Circ Res. 2006;98:606–16.

    Article  CAS  PubMed  Google Scholar 

  62. Kusaka G, Kimura H, Kusaka I, Perkins E, Nanda A, Zhang JH. Contribution of Src tyrosine kinase to cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg. 2003;99:383–90.

    Article  CAS  PubMed  Google Scholar 

  63. McCaslin AF, Chen BR, Radosevich AJ, Cauli B, Hillman EM. In vivo 3D morphology of astrocyte–vasculature interactions in the somatosensory cortex: implications for neurovascular coupling. J Cereb Blood Flow Metab. 2011;31:795–806.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lecrux C, Toussay X, Kocharyan A, Fernandes P, Neupane S, Levesque M, et al. Pyramidal neurons are “neurogenic hubs” in the neurovascular coupling response to whisker stimulation. J Neurosci. 2011;31:9836–47.

    Article  CAS  PubMed  Google Scholar 

  65. Dunn KM, Nelson MT. Potassium channels and neurovascular coupling. Circ J. 2010;74:608–16.

    Article  CAS  PubMed  Google Scholar 

  66. Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain. 2009;132:1866–81.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17:439–47.

    Article  CAS  PubMed  Google Scholar 

  68. Koide M, Sukhotinsky I, Ayata C, Wellman GC. Subarachnoid hemorrhage, spreading depolarizations and impaired neurovascular coupling. Stroke Res Treat. 2013;2013:819340.

    PubMed Central  PubMed  Google Scholar 

  69. Guiou M, Sheth S, Nemoto M, Walker M, Pouratian N, Ba A, et al. Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling. J Biomed Opt. 2005;10:11004.

    Article  PubMed  Google Scholar 

  70. Koide M, Bonev AD, Nelson MT, Wellman GC. Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2 + -activated K + (BK) channels. Proc Natl Acad Sci U S A. 2012;109:E1387–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Koide M, Bonev AD, Nelson MT, Wellman GC. Subarachnoid blood converts neurally evoked vasodilation to vasoconstriction in rat brain cortex. Acta Neurochir Suppl. 2013;115:167–71.

    PubMed Central  PubMed  Google Scholar 

  72. Slevin M, Krupinski J, Slowik A, Rubio F, Szczudlik A, Gaffney J. Activation of MAP kinase (ERK-1/ERK-2), tyrosine kinase and VEGF in the human brain following acute ischaemic stroke. Neuroreport. 2000;11:2759–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support to L.E. from the Swedish Research Council (grant no 5958), the Swedish Heart and Lung Foundation, and the Lundbeck Foundation is gratefully acknowledged.

Conflict of Interest

The authors, Lars Edvinsson, Stine Schmidt Larsen, Aida Maddahi, and Janne Nielsen declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Edvinsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edvinsson, L., Larsen, S.S., Maddahi, A. et al. Plasticity of Cerebrovascular Smooth Muscle Cells After Subarachnoid Hemorrhage. Transl. Stroke Res. 5, 365–376 (2014). https://doi.org/10.1007/s12975-014-0331-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0331-4

Keywords

Navigation