Skip to main content
Log in

Cerebral Aneurysms: Formation, Progression, and Developmental Chronology

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The prevalence of unruptured intracranial aneurysms (UIAs) in the general population is up to 3 %. Existing epidemiological data suggests that only a small fraction of UIAs progress towards rupture over the lifetime of an individual, but the surrogates for subsequent rupture and the natural history of UIAs are discussed very controversially at present. In case of rupture of an UIA, the case fatality is up to 50 %, which therefore continues to stimulate interest in the pathogenesis of cerebral aneurysm formation and progression. Actual data on the chronological development of cerebral aneurysm has been especially difficult to obtain and, until recently, the existing knowledge in this respect is mainly derived from animal or mathematical models or short-term observational studies. Here, we review the current data on cerebral aneurysm formation and progression as well as a novel approach to investigate the developmental chronology of cerebral aneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weir B. Unruptured intracranial aneurysms: a review. J Neurosurg. 2002;96:3–42.

    Article  PubMed  Google Scholar 

  2. Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, et al. Incidental findings on brain MRI in the general population. N Engl J Med. 2007;357:1821–8.

    Article  CAS  PubMed  Google Scholar 

  3. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10:626–36.

    Article  PubMed  Google Scholar 

  4. Krischek B, Inoue I. The genetics of intracranial aneurysms. J Hum Genet. 2006;51:587–94.

    Article  PubMed  Google Scholar 

  5. Morita A, Fujiwara S, Hashi K, Ohtsu H, Kirino T. Risk of rupture associated with intact cerebral aneurysms in the Japanese population: a systematic review of the literature from Japan. J Neurosurg. 2005;102:601–6.

    Article  PubMed  Google Scholar 

  6. Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S, Hashimoto N, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med. 2012;366:2474–82.

    Article  PubMed  Google Scholar 

  7. Wiebers DO, Whisnant JP, Huston 3rd J, Meissner I, Brown Jr RD, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.

    Article  PubMed  Google Scholar 

  8. Lasheras JC. The biomechanics of arterial aneurysms. Annu Rev Fluid Mech. 2007;39:293–319.

    Article  Google Scholar 

  9. Fang H. A comparison of blood vessels of the brain and peripheral blood vessels. In: Wright IS, Millikan CH, editors. Cerebrovascular diseases. New York: Grune and Stratton; 1958. p. 17–22.

    Google Scholar 

  10. Chatziprodromou I, Tricoli A, Poulikakos D, Ventikos Y. Hemodynamics and wall remodeling of a growing cerebral aneurysm: a computational model. J Biomech. 2007;40:412–26.

    Article  CAS  PubMed  Google Scholar 

  11. Steiger HJ. Pathophysiology of development and rupture of cerebral aneurysms. Acta Neurochir Suppl. 1990;48:1–57.

    CAS  PubMed  Google Scholar 

  12. Chang HS. Simulation of the natural history of cerebral aneurysms based on data from the international study of unruptured intracranial aneurysms. J Neurosurg. 2006;104:188–94.

    Article  PubMed  Google Scholar 

  13. Chatziprodromou I, Poulikakos D, Ventikos Y. On the influence of variation in hemodynamic conditions on the generation and growth of cerebral aneurysms and atherogenesis: a computational model. J Biomech. 2007;40:3626–40.

    Article  CAS  PubMed  Google Scholar 

  14. Watton PN, Ventikos Y, Holzapfel GA. Modeling the growth and stabilization of cerebral aneurysms. Math Med Biol J IMA. 2009;26:133–64.

    Article  Google Scholar 

  15. Aoki T, Kataoka H, Shimamura M, Nakagami H, Wakayama K, Moriwaki T, et al. Nf-kappaB is a key mediator of cerebral aneurysm formation. Circulation. 2007;116:2830–40.

    Article  CAS  PubMed  Google Scholar 

  16. Chalouhi N, Points L, Pierce GL, Ballas Z, Jabbour P, Hasan D. Localized increase of chemokines in the lumen of human cerebral aneurysms. Stroke 2013

  17. Kanematsu Y, Kanematsu M, Kurihara C, Tada Y, Tsou TL, van Rooijen N, et al. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke. 2011;42:173–8.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Starke RM, Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, et al. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res. 2013;10:247–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhang HF, Zhao MG, Liang GB, Song ZQ, Li ZQ. Expression of pro-inflammatory cytokines and the risk of intracranial aneurysm. Inflammation 2013

  20. Hasan D, Chalouhi N, Jabbour P, Hashimoto T. Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: preliminary results. J Neuroinflammation. 2012;9:222.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hoh BL, Hosaka K, Downes DP, Nowicki KW, Fernandez CE, Batich CD, et al. Monocyte chemotactic protein-1 promotes inflammatory vascular repair of murine carotid aneurysms via a macrophage inflammatory protein-1alpha and macrophage inflammatory protein-2-dependent pathway. Circulation. 2011;124:2243–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Frenzel T, Lee CZ, Kim H, Quinnine NJ, Hashimoto T, Lawton MT, et al. Feasibility of minocycline and doxycycline use as potential vasculostatic therapy for brain vascular malformations: pilot study of adverse events and tolerance. Cerebrovasc Dis. 2008;25:157–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Makino H, Tada Y, Wada K, Liang EI, Chang M, Mobashery S, et al. Pharmacological stabilization of intracranial aneurysms in mice: a feasibility study. Stroke. 2012;43:2450–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hasan DM, Chalouhi N, Jabbour P, Dumont AS, Kung DK, Magnotta VA, et al. Evidence that acetylsalicylic acid attenuates inflammation in the walls of human cerebral aneurysms: preliminary results. J Am Heart Assoc. 2013;2:e000019.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Hasan DM, Mahaney KB, Brown Jr RD, Meissner I, Piepgras DG, Huston J, et al. Aspirin as a promising agent for decreasing incidence of cerebral aneurysm rupture. Stroke. 2011;42:3156–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Caranci F, Briganti F, Cirillo L, Leonardi M, Muto M. Epidemiology and genetics of intracranial aneurysms. European journal of radiology. 2013

  27. Grobelny TJ. Brain aneurysms: Epidemiology, treatment options, and milestones of endovascular treatment evolution. Dis Mon DM. 2011;57:647–55.

    Article  Google Scholar 

  28. Krischek B, Tatagiba M. The influence of genetics on intracranial aneurysm formation and rupture: current knowledge and its possible impact on future treatment. Adv Tech Stand Neurosurg. 2008;33:131–47.

    Article  CAS  PubMed  Google Scholar 

  29. Onda H, Kasuya H, Yoneyama T, Takakura K, Hori T, Takeda J, et al. Genome wide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet. 2001;69:804–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ruigrok YM, Rinkel GJ. Genetics of intracranial aneurysms. Stroke. 2008;39:1049–55.

    Article  PubMed  Google Scholar 

  31. Ruigrok YM, Rinkel GJ, Wijmenga C, Kasuya H, Tajima A, Takahashi T, et al. Association analysis of genes involved in the maintenance of the integrity of the extracellular matrix with intracranial aneurysms in a Japanese cohort. Cerebrovasc Dis. 2009;28:131–4.

    Article  CAS  PubMed  Google Scholar 

  32. Kissela BM, Sauerbeck L, Woo D, Khoury J, Carrozzella J, Pancioli A, et al. Subarachnoid hemorrhage: a preventable disease with a heritable component. Stroke. 2002;33:1321–6.

    Article  PubMed  Google Scholar 

  33. Schievink WI, Schaid DJ, Michels VV, Piepgras DG. Familial aneurysmal subarachnoid hemorrhage: a community-based study. J Neurosurg. 1995;83:426–9.

    Article  CAS  PubMed  Google Scholar 

  34. Brown Jr RD, Huston J, Hornung R, Foroud T, Kallmes DF, Kleindorfer D, et al. Screening for brain aneurysm in the familial intracranial aneurysm study: frequency and predictors of lesion detection. J Neurosurg. 2008;108:1132–8.

    Article  PubMed  Google Scholar 

  35. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Morishita R, Hashimoto N. Reduced collagen biosynthesis is the hallmark of cerebral aneurysm: contribution of interleukin-1beta and nuclear factor-kappaB. Arterioscler Thromb Vasc Biol. 2009;29:1080–6.

    Article  CAS  PubMed  Google Scholar 

  36. Juvela S, Poussa K, Porras M. Factors affecting formation and growth of intracranial aneurysms: a long-term follow-up study. Stroke. 2001;32:485–91.

    Article  CAS  PubMed  Google Scholar 

  37. Koffijberg H, Buskens E, Algra A, Wermer MJ, Rinkel GJ. Growth rates of intracranial aneurysms: exploring constancy. J Neurosurg. 2008;109:176–85.

    Article  PubMed  Google Scholar 

  38. Nuki Y, Tsou TL, Kurihara C, Kanematsu M, Kanematsu Y, Hashimoto T. Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension. 2009;54:1337–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sprengers ME, van Rooij WJ, Sluzewski M, Rinkel GJ, Velthuis BK, de Kort GA, et al. MR angiography follow-up 5 years after coiling: frequency of new aneurysms and enlargement of untreated aneurysms. AJNR Am J neuroradiol. 2009;30:303–7.

    Article  CAS  PubMed  Google Scholar 

  40. Wermer MJ, van der Schaaf IC, Velthuis BK, Algra A, Buskens E, Rinkel GJ. Follow-up screening after subarachnoid haemorrhage: frequency and determinants of new aneurysms and enlargement of existing aneurysms. Brain J Neurol. 2005;128:2421–9.

    Article  CAS  Google Scholar 

  41. Juvela S, Porras M, Poussa K. Natural history of unruptured intracranial aneurysms: probability of and risk factors for aneurysm rupture. J Neurosurg. 2000;93:379–87.

    Article  CAS  PubMed  Google Scholar 

  42. David CA, Vishteh AG, Spetzler RF, Lemole M, Lawton MT, Partovi S. Late angiographic follow-up review of surgically treated aneurysms. J Neurosurg. 1999;91:396–401.

    Article  CAS  PubMed  Google Scholar 

  43. Ferns SP, Sprengers ME, van Rooij WJ, van den Berg R, Velthuis BK, de Kort GA, et al. De novo aneurysm formation and growth of untreated aneurysms: A 5-year MRA follow-up in a large cohort of patients with coiled aneurysms and review of the literature. Stroke. 2011;42:313–8.

    Article  PubMed  Google Scholar 

  44. Tsutsumi K, Ueki K, Morita A, Usui M, Kirino T. Risk of aneurysm recurrence in patients with clipped cerebral aneurysms: results of long-term follow-up angiography. Stroke. 2001;32:1191–4.

    Article  CAS  PubMed  Google Scholar 

  45. Etminan N, Dreier R, Buchholz BA, Bruckner P, Steiger HJ, Hanggi D, et al. Exploring the age of intracranial aneurysms using carbon birth dating: preliminary results. Stroke. 2013;44:799–802.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Vogel JS, Love AH. Quantitating isotopic molecular labels with accelerator mass spectrometry. Methods Enzymol. 2005;402:402–22.

    Article  CAS  PubMed  Google Scholar 

  47. Vogel JS, Turteltaub KW, Finkel R, Nelson DE. Accelerator mass spectrometry. Anal Chem. 1995;67:353A–9.

    Article  CAS  PubMed  Google Scholar 

  48. Stuiver M, Reimer PJ, Braziunas TF. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon. 1998;40:1127–51.

    CAS  Google Scholar 

  49. Graven HD, Guilderson TP, Keeling RF. Observations of radiocarbon in CO2 at La Jolla, California, USA 1992–2007: analysis of the long-term trend. J Geophys Res-Atmos. 2012;117

  50. Hua Q, Barbetti M. Review of tropospheric bomb C-14 data for carbon cycle modeling and age calibration purposes. Radiocarbon. 2004;46:1273–98.

    CAS  Google Scholar 

  51. Levin I, Hammer S, Kromer B, Meinhardt F. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci Total Environ. 2008;391:211–6.

    Article  CAS  PubMed  Google Scholar 

  52. Levin I, Naegler T, Kromer B, Diehl M, Francey RJ, Gomez-Pelaez AJ, et al. Observations and modeling of the global distribution and long-term trend of atmospheric 14CO2. Tellus. 2010:26–46

  53. Harkness DD. Further investigations of the transfer of bomb 14C to man. Nature. 1972;240:302–3.

    Article  CAS  PubMed  Google Scholar 

  54. Harkness DD, Walton A. Carbon-14 in the biosphere and humans. Nature. 1969;223:1216–8.

    Article  CAS  PubMed  Google Scholar 

  55. Libby WF, Berger R, Mead JF, Alexander GV, Ross JF. Replacement rates for human tissue from atmospheric radiocarbon. Science. 1964;146:1170–2.

    Article  CAS  PubMed  Google Scholar 

  56. Lovell MA, Robertson JD, Buchholz BA, Xie C, Markesbery WR. Use of bomb pulse carbon-14 to age senile plaques and neurofibrillary tangles in Alzheimer's disease. Neurobiol Aging. 2002;23:179–86.

    Article  PubMed  Google Scholar 

  57. Stewart DN, Lango J, Nambiar KP, Falso MJ, FitzGerald PG, Rocke DM, et al. Carbon turnover in the water-soluble protein of the adult human lens. Mol Vis. 2013;19:463–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Arner P, Bernard S, Salehpour M, Possnert G, Liebl J, Steier P, et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature. 2011;478:110–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, et al. The age of olfactory bulb neurons in humans. Neuron. 2012;74:634–9.

    Article  CAS  PubMed  Google Scholar 

  61. Perl S, Kushner JA, Buchholz BA, Meeker AK, Stein GM, Hsieh M, et al. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrin Metab. 2010;95:E234–9.

    Article  CAS  Google Scholar 

  62. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453:783–7.

    Article  CAS  PubMed  Google Scholar 

  63. Spalding KL, Bhardwaj RD, Buchholz BA, Druid H, Frisen J. Retrospective birth dating of cells in humans. Cell. 2005;122:133–43.

    Article  CAS  PubMed  Google Scholar 

  64. Hagg S, Salehpour M, Noori P, Lundstrom J, Possnert G, Takolander R, et al. Carotid plaque age is a feature of plaque stability inversely related to levels of plasma insulin. PloS One. 2011;6:e18248.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Brown TA, Nelson DE, Vogel JS, Southon JR. Improved collagen extraction by modified Longin method. Radiocarbon. 1988;30:171–7.

    CAS  Google Scholar 

  66. Reimer PJ, Brown TA, Reimer RW. Discussion: reporting and calibration of post-bomb C-14 data. Radiocarbon. 2004;46:1299–304.

    CAS  Google Scholar 

  67. Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Bjork-Eriksson T, et al. Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci U S A. 2006;103:12564–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NE and RLM receive grant support from the Physicians Services Incorporated Foundation. RLM receives grant support from the Brain Aneurysm Foundation, Canadian Institutes of Health Research, and the Heart and Stroke Foundation of Ontario. RLM is a consultant for Actelion Pharmaceuticals and Chief Scientific Officer of Edge Therapeutics, Inc. NE, DH, and RLM are scientific advisors/officers for Edge Therapeutics, Inc.

Support was also provided by NIH/NIGMS 8P41GM103483. This work was performed in part under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Etminan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etminan, N., Buchholz, B.A., Dreier, R. et al. Cerebral Aneurysms: Formation, Progression, and Developmental Chronology. Transl. Stroke Res. 5, 167–173 (2014). https://doi.org/10.1007/s12975-013-0294-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0294-x

Keywords

Navigation