Skip to main content
Log in

Importance of heat shock proteins in maize

  • Review Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Abiotic and biotic stress conditions cause extensive losses to maize production, mainly due to protein dysfunction in these conditions. In higher plants, the occurrence of heat-shock proteins (HSPs) in response to different environmental stresses is a universal phenomenon and has been well documented. Many studies have demonstrated that most HSPs are involved in many regulatory pathways, act as molecular chaperones for other cell proteins, and have strong cytoprotective effects. Although many functional roles for HSPs are known, the mechanisms for these multiple functions are not entirely understood. Here we reviewed the correlation among HSP genes/proteins and plant tolerance, especially maize, in different environmental stresses. Due to the low availability of information regarding the expression of HSP genes in response to different stresses in maize, we decided to mine databases in order to generate new insights related to this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal M, Katiyar-Agarwal S, Grover A. 2002. Plant Hsp100 proteins: structure, function and regulation. Plant Sci. 163: 397–405

    Article  CAS  Google Scholar 

  • Agarwal M, Katiyar-Agarwal S, Sahi C, Gallie DR, Grover A. 2001. Arabidopsis thaliana Hsp100 proteins: kith and kin. Cell Stress Chap. 6: 219–224

    Article  CAS  Google Scholar 

  • Ashburner M, Bonner JJ. 1979. The induction of gene activity in drosophila by heat shock. Cell 17: 241–54

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology 28–36

  • Baszczynski CL, Walden DB, Atkinson BG. 1983. Regulation of gene expression in corn (Zea mays L.) by heat shock. II. In vitro analysis of RNAs from heat-shocked seedlings. Can. J. Biochem. Cell. Biol. 61: 395–403

    Article  PubMed  CAS  Google Scholar 

  • Bechtold U, Richard O, Zamboni A, Gapper C, Geisler M, Pogson B, Karpinski S, Mullineaux PM. 2008. Impact of chloroplastic and extracellular sourced ROS on high light responsive gene expression in Arabidopsis. J. Exp. Bot. 59: 121–133

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH. 2004. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16: 1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal C, Stone PJ, Gras PW, Bekes F, Clarke B, Barlow EWR, Appels R, Wrigley CW. 1998. Heat-shock protein 70 and dough-quality changes resulting from heat stress during grain filling in wheat. Cereal Chem. 75: 43–50

    Article  CAS  Google Scholar 

  • Bonham-Smith PC, Kapoor M, Bewley JD. 1987. Establishment of thermotolerance in maize by exposure to stresses other than a heat shock does not require heat shock protein synthesis. Plant Physiol. 85: 575–80

    Article  PubMed  CAS  Google Scholar 

  • Boter M, Amigues B, Peart J, Breuer C, Kadota Y, Casais C, Moore G, Kleanthous C, Ochsenbein F, Shirasu K, Guerois R. 2007. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19: 3791–3804

    Article  PubMed  CAS  Google Scholar 

  • Brocchieri L, Karlin S. 2000. Conservation among HSP60 sequences in relation to structure, function, and evolution. Prot. Sci. 9: 476–486

    Article  CAS  Google Scholar 

  • Burton BM, Baker TA. 2005. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Prot. Si. 14: 1945–1954

    Article  CAS  Google Scholar 

  • Caspers G-J, Leunissen JAM, Jong W. 1995. The expanding small heat-shock protein family, and structure predictions of the conserved “α-crystallin domain”. J. Mol. Evol. 40: 238–248

    Article  PubMed  CAS  Google Scholar 

  • Cheetham ME, Caplan AJ. 1998. Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chap. 3: 28–36

    Article  CAS  Google Scholar 

  • Chen ZY, Brown RL, Damann KE, Cleveland TE. 2007. Identification of maize kernel endosperm proteins associated with resistance to aflatoxin contamination by Aspergillus flavus. Phytopathol. 97: 1094–1103

    Article  CAS  Google Scholar 

  • Cho EK, Hong CB. 2004. Molecular cloning and expression pattern analyses of heat shock protein 70 genes from Nicotiana tabacum. J. Plant Biol. 47: 149–159

    Article  CAS  Google Scholar 

  • Demirevska K, Simova-Stoilova L, Vassileva V, Vaseva I, Grigorova B, Feller U. 2008. Drought-induced leaf protein alterations in sensitive and tolerant wheat varieties. Gen. Appl. Plant Physiol. 34: 79–102

    CAS  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT, Neill SJ. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159–172

    Article  PubMed  CAS  Google Scholar 

  • Duan Y-H, Guo J, Ding K, Wang S-J, Zhang H, Dai X-W, Chen Y-Y, Govers F, Huang L-L, Kang Z-S. 2011. Characterizatio n of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Mol. Biol. Rep. 38: 301–307

    Article  PubMed  CAS  Google Scholar 

  • Efeo lu B. 2009. Heat shock proteins and heat shock response in plants. G. U. i. 22: 67–75

    Google Scholar 

  • Feder EM, Hofman GE. 1999. Heat-shock proteins, molecular chaperons, and the stress response. Annu. Rev. Physiol. 61: 243–282

    Article  PubMed  CAS  Google Scholar 

  • Futamura N, Ishii-Minami N, Hayashida N, Shinohara K. 1999. Expression of DnaJ homologs and Hsp70 in the Japanese Willow (Salix gilgiana Seemen). Plant Cell Physiol. 40: 524–531

    PubMed  CAS  Google Scholar 

  • Gallego-Bartolome J, Minguet EG, Marín JA, Prat S, Blázquez MA, Alabad D. 2010. Transcriptional diversification and functional conservation between DELLA proteins in Arabidopsis. Mol. Biol. Evol. 27: 1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Mogk A, Zvi APB, Tomoyasu TB, Bukau B. 1999. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96: 13732–13737

    Article  PubMed  CAS  Google Scholar 

  • Gullí M, Corradi M, Rampino P, Marmiroli M, Perrotta C. 2007. Four members of the HSP101 gene family are differently regulated in Triticum durum Desf. FEBS Lett. 581: 4841–4849

    Article  PubMed  Google Scholar 

  • Gullì M, Rampino P, Lupotto E, Marmiroli N, Perrotta C. 2005. The effect of heat stress and cadmium ions on the expression of a small hsp gene in barley and maize. J. CerealSci. 42: 25–31

    Article  Google Scholar 

  • Gurley WB, Key JL. 1991. Transcriptional regulation of the heat shock response: a plant perspective. Biochemistry 30: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Hamilton EW, Heckathorn SA. 2001. Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol. 126: 1266–1274

    Article  PubMed  CAS  Google Scholar 

  • Hittinger CT, Carroll SB. 2007. Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449: 677–682

    Article  PubMed  CAS  Google Scholar 

  • Hong SW, Vierling E. 2000. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. USA 97: 4392–4397

    Article  PubMed  CAS  Google Scholar 

  • Horst RJ, Doehlemann G, Wahl R, Hofmann J, Schmiedl A, Kahmann R, Kämper J, Sonnewald U, Voll LM. 2010. Ustilago maydis infection strongly alters organic nitrogen allocation in maize and stimulates productivity of systemic source leaves. Plant Physiol. 152: 293–308

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Hu G, Han B. 2009. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci. 176: 583–590

    Article  CAS  Google Scholar 

  • Hu X, Liu R, Li Y, Wang W, Tai F, Xue R, Li C. 2010. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul. 60: 225–235

    Article  CAS  Google Scholar 

  • Iqbal N, Farooq S, Arshad R, Hameed A. 2010. Differential accumulation of high and low molecular weight heat shock proteins in Basmati rice (Oryza sativa L.) cultivars. Genet. Resour. Crop Evol. 57: 65–70

    Article  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J. 1993. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268: 151–1520

    Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A. 2003. Heat tolerant basmati rice engineered by overexpression of Hsp101 gene. Plant Mol. Biol. 51: 677–686

    Article  PubMed  CAS  Google Scholar 

  • Krishna M, Nguyen H, Burke JJ. 1989. Heat shock protein synthesis and thermal tolerance in wheat. Plant Physiol. 90: 140–145

    Article  Google Scholar 

  • Krishna P, Gloor G. 2001. The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chap. 6: 238–246

    Article  CAS  Google Scholar 

  • Krishna P, Sacco M, Cherutti JF, Hill S. 1995. Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol. 107: 915–923

    PubMed  CAS  Google Scholar 

  • Lee JH, Schöffl F. 1996. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol. Gen. Genet. 252: 11–19

    Article  PubMed  CAS  Google Scholar 

  • Lee YR, Nagao RT, Key JL. 1994. A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell 6: 1889–1897

    Article  PubMed  CAS  Google Scholar 

  • Li G, Chang H, Zhou R. 2007. Characterization of a TaJ gene from wheat. Agric. Sci. China 6: 1043–1050

    CAS  Google Scholar 

  • Li QB, Haskell DW, Guy CL. 1999. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Mol. Biol. 39: 21–34

    Article  PubMed  Google Scholar 

  • Li Z, Zhang H, Ge S, Gu X, Gao G, Luo J. 2009. Expression pat tern divergence of duplicated genes in rice. BMC Bioin formatics. 10(Suppl 6): S8

    Article  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gullì M, Nguyen HT, Marmiroli N. 2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol. 48: 667–681.

    Article  PubMed  CAS  Google Scholar 

  • Malik, MK, Slovin JP, Hwang CH, Zimmerman JL. 1999. Modified expression of a carrot small heat shock protein gene, hsp17.7, results in increased or decreased thermotolerance double dagger. Plant J. 20: 89–99

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas JP, Crone EC. 1996. Pollen and the heat shock response. Sex. Plant Reprod. 9: 370–374

    Article  Google Scholar 

  • Nieto-Sotelo J, Kannan KB, Segal MC. 1999. Characterization of a maize heat-shock protein 101 gene, HSP101, encoding a ClpB/Hsp100 protein homologue. Gene 230: 187–195

    Article  PubMed  CAS  Google Scholar 

  • Ohno S. 1970. Evolution by Gene Duplication, Springer, New York

    Google Scholar 

  • Ooijen GV, Lukasik E, Burg HA, Vossen JH, Cornelissen BJC, Takken FLW. 2010. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2. Plant J. 63: 563–572

    Article  PubMed  Google Scholar 

  • Ouyang Y, Chen J, Xie W, Wang L, Zhang Q. 2009. Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Mol. Biol. 70: 341–357

    Article  PubMed  CAS  Google Scholar 

  • Page RDM. 1996. Treeview: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358

    PubMed  CAS  Google Scholar 

  • Pareek A, Singla SL, Grover A. 1995. Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Mol. Biol. 29: 293–301

    Article  PubMed  CAS  Google Scholar 

  • Pareek A, Singla SL, Kush AK, Grover A. 1997. Distribution patterns of HSP 90 protein in rice. Plant Sci. 125: 221–230

    Article  CAS  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S. 1994. Protein disaggregation mediated by heat stress protein 104. Nature 372: 475–478

    Article  PubMed  CAS  Google Scholar 

  • Preczewski PJ, Heckathorn SA, Downs CA, Coleman JS. 2000. Photosynthetic thermotolerance is quantitatively and positively correlated with production of specific heat-shock proteins. Photosynthetica 38: 127–134

    Article  CAS  Google Scholar 

  • Quietsch C, Hong SW, Vierling E, Lindquist S. 2000. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12: 479–492

    Article  Google Scholar 

  • Qiu XB, Shao YM, Miao S, Wang L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. CMLS Cell. Mol. Life Sci. 63: 2560–2570

    Article  CAS  Google Scholar 

  • Rajan VBV, D’silva P. 2009. Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct. Integr. Genomics 9: 433–446

    Article  PubMed  CAS  Google Scholar 

  • Rikhvanov EG, Gamburg KZ, Varakina NN, Rusaleva TM, Fedoseeva IV, Tauson EL, Stupnikova IV, Stepanov AV, Borovskii GB, Voinikov VK. 2007. Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture. Plant J. 52: 763–778

    Article  PubMed  CAS  Google Scholar 

  • Ristic Z, Gifford DJ, Cass DD. 1991. Heat shock proteins in two lines of Zea mays L. that differ in drought and heat resistance. Plant Physiol. 97: 1430–1434

    Article  PubMed  CAS  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M. 2004. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett. 557: 265–268

    Article  PubMed  CAS  Google Scholar 

  • Schirmer EC, Lindquist S, Vierling E. 1994. An Arabidopsis heat stress protein complements a thermotolerance defect in yeast. Plant Cell 6: 1899–1909

    Article  PubMed  CAS  Google Scholar 

  • Shi YY, Hong XG, Wang CC. 2005. The C-terminal sequence of Escherichia coli DnaJ is essential for dimerization and chaperone activity: a small angle X-ray scattering study in solution. J. Biol. Chem. 280: 22761–22768

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M. 2003. Gene net works involved in drought stress response and tolerance. Curr. Opin. Plant Biol. 6: 410–417

    Article  PubMed  CAS  Google Scholar 

  • Siddique M, Gernhard S, Koskull-Döring P, Vierling E, Scharf KD. 2008. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chap. 13: 183–197

    Article  CAS  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C. 2004. Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4: 1581–1590

    Article  PubMed  CAS  Google Scholar 

  • Süle A, Vanrobaeys F, Hajós G, Van Beeumen J, Devreese B. 2004. Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochemistry 65: 1853–1863

    Article  PubMed  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N. 2002. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta. 1577: 1–9

    PubMed  CAS  Google Scholar 

  • Sung DY, Vierling E, Guy CL. 2001. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 126: 789–800

    Article  PubMed  CAS  Google Scholar 

  • Swindell WR, Huebner M, Weber AP. 2007. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8: 125

    Article  PubMed  Google Scholar 

  • Szabo A, Korszun R, Hartl Fu, Flanagan J. 1996. A zinc fingerlike domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. EMBO J. 15: 408–417

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Vierling E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579–620

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244–252

    Article  PubMed  CAS  Google Scholar 

  • Waters ER, Aevermann BD, Sanders-Reed Z. 2008. Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chap. 13: 127–142

    Article  CAS  Google Scholar 

  • Waters ER, Lee GJ, Vierling E. 1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47: 325–338

    Article  CAS  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M. 2007. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J. Biol. Chem. 282: 37794–37804

    Article  PubMed  CAS  Google Scholar 

  • Young TE, Ling J, Lee CJG, Tanguay RL, Caldwell C, Gallie DR. 2001. Developmental and thermal regulation of the maize heat shock protein, HSP101. Plant Physiol. 127: 777–791

    Article  PubMed  CAS  Google Scholar 

  • Zhichang Z, Wanrong Z, Jinping Y, Jianjun Z, Zhen L, Xufeng L, Yang Y. 2010. Over-expression of Arabidopsis DnaJ contributes to NaCl-stress tolerance. Afr. J. Biotechnol. 9: 972–978.

    Google Scholar 

  • Zimmermann P, Laule O, Schmitz J, Hruz T, Bleulera S, Gruissema W. 2008. Genevestigator transcriptome meta-analysis and biomarker search using rice and barley gene expression databases. Mol. Plant. 5: 851–857.

    Article  Google Scholar 

  • Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X. 2009. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J. Plant Physiol. 166: 851–861.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Costa de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pegoraro, C., Mertz, L.M., da Maia, L.C. et al. Importance of heat shock proteins in maize. J. Crop Sci. Biotechnol. 14, 85–95 (2011). https://doi.org/10.1007/s12892-010-0119-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-010-0119-3

Key words

Navigation