Skip to main content
Log in

Mapping quantitative trait loci for awnness and yield component traits in isogenic lines derived from an Oryza sativa / O. rufipogon cross

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

An advanced backcross line, HR9118, was produced from a single plant of BC2F3 families derived from a cross between Oryza rufipogon Griff. (IRGC 105491) as a donor parent and the O. sativa subsp. japonica cv. Hwaseongbyeo as a recurrent parent. Although HR9118 resembled Hwaseongbyeo, several traits were different from those of Hwasoengbyeo, including days to heading, plant height, and awn. These differences between Hwasongbyeo and HR9118 could be attributed to introgressed O. rufipogon chromosome segments into HR9118. Introgression analysis using 460 SSR markers revealed that three O. rufipogon-specific chromosome segments were detected in HR9118 genome. F2:3 populations derived from the cross between Hwaseongbyo and HR9118, consisting of 340 F2 plants and 137 F3 lines, were used to map and characterize QTLs for 12 traits. QTL analysis identified a total of 17 QTLs in the F2:3 populations. Of these, seven QTLs were shared by the F2 and F3 populations, whereas the other ten QTLs were identified only in the F3 population. In seven (41.2%) QTLs identified in this study, the O. rufipogon-derived alleles contributed desirable agronomic effects despite the overall undesirable characteristics of the wild phenotype. Each of three O. rufipogon introgressed segments contained multiple QTLs, indicating linkage and/or pleotropic effects. A cluster of eight QTLs was detected on chromosome 8 including a major QTL for awn. Substitution mapping using F2 population indicated that awn8 was located within an interval between two SSR makers RM23326 and RM23356 which are 590 kb apart. SSR markers tightly linked to QTLs for yield components detected in this study will facilitate cloning of the gene underlying this QTL as well as marker-assisted selection for variation in grain weight in an applied breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashikari M, Matsuoka M. 2006. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci. 11: 344–350

    Article  CAS  PubMed  Google Scholar 

  • Cai HW, Morishima H. 2002. QTL clusters reflect character associations in wild and cultivated rice. Theor. Appl. Genet. 104: 1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138: 1251–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YC, Suh JP, Choi IS, Hong HC, Baek MK, Kang KH, Kim YG, Ahn SN, Choi HC, Hwang HG, Moon HP. 2003. QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon. Treat. Crop Res. 4: 19–29

    Google Scholar 

  • Jin FX, Linh L, Kang KH, Ahn SN. 2005. Mapping Quantitative trait loci for grain traits using near isogenic line from a cross between Oryza minuta and O. sativa. Korean J. Breed. 37: 221–228.

    Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M. 2006. An SNP caused loss of seed shattering during rice domestication. Science 312: 1392–1396

    Article  CAS  PubMed  Google Scholar 

  • Kurakazu T, Sobrizal, Yoshimura. A. 2001. RFLP mapping of genes for awn on chromosomes 4 and 5 in rice using Oryza meridionalis introgression lines. Rice Genet. Newsl. 18: 28–30

    Google Scholar 

  • Lee SJ, Oh CS, Suh JP, Mccouch SR, Ahn SN. 2005. Identification of QTLs for domestication-related and agro nomic traits in an Oryza sativa × O. rufipogon BC1F7 population. Plant Breed. 124: 209–219

    Article  CAS  Google Scholar 

  • Li C, Zhou A, Sang T. 2006. Rice domestication by reducing shattering. Science 311: 1936–1939

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Sasaki T, Yano M. 1998. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor. Appl. Genet. 96: 997–1003

    Article  CAS  Google Scholar 

  • Linh LH, Jin FX, Kang KH, Lee YT, Kwon SJ, Ahn SN. 2006. Mapping quantitative trait loci for heading date and awn length using an advanced backcross line from a cross between Oryza sativa and O. minuta. Breed. Sci. 56:341–349

    Article  Google Scholar 

  • Matsushita S, Sanchez PL, Sobrizal, Doi K, Yoshimura A. 2003. Identification of new alleles of awnness genes, An7 and An8, in rice using Oryza glumaepatula introgression lines. Rice. Genet. Newsl. 20: 19–20

    Google Scholar 

  • McCouch SR, Sweeney M, Li J, Jiang H, et al. 2007. Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154: 317–339

    Article  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, et al. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9: 199–207

    Article  CAS  PubMed  Google Scholar 

  • Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT. 2003. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff, into indica rice (Oryza sativa L.). Theor. Appl. Genet. 106: 583–593

    CAS  PubMed  Google Scholar 

  • Onishi K, Horiuchi Y, Oka NI, Takagi K, Ichikawa N, Maruoka M, Sano Y. 2007. A QTL cluster for plant architecture and its ecological significance in Asian wild rice. Breed. Sci. 57: 7–16

    Article  Google Scholar 

  • Panaud O, Chen X, McCouch SR. 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in Rice (Oraza sativa L.). Mol. Gen. Genet. 252: 597–607

    CAS  PubMed  Google Scholar 

  • Sato S, Ishikawa S, Shimono M, Shinjyo C. 1996. Genetic studies on and awnness gene An-4 on chromosome 8 in rice, Oryza sativa L. Breed. Sci. 46: 321–327

    CAS  Google Scholar 

  • Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch SR. 2003. Identification of quantitative trait loci for grain quality in an advance backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet. 107: 1433–1411

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C. 2008. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 40: 1360–1364

    Article  CAS  PubMed  Google Scholar 

  • Temnykh S, De Clerck G, Lukashova A, Lipovitch L, Cartinhour S, McCouch SR. 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11: 1441–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR. 2003. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor. Appl. Genet. 107: 479–493

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Li DJ, Qiang F, Zu ZF, Fu YC, Wang XK, Sun C. 2006. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of Introgressed segments associated with yield-related traits. Theor. Appl. Genet. 112: 570–580

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR. 1998. Identification of trait improving quanti tative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150: 899–909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Song MH, Jin F, Ahn SN, Suh JP, Hwang HG, McCouch SR. 2006. Fine mapping a grain weight quantitative trait loci on rice chromosome 8 using nearly-isogenic lines derived from a cross between Oryza sativa and O. rufipogon. Theor. Appl. Genet. 113: 885–894

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN. 2008. Fine mapping a yield-enhancing QTL cluster associated with transgression variation in an Oryza sativa and O. rufipogon cross. Theor. Appl. Genet. 116: 613–622

    Article  PubMed  Google Scholar 

  • Yano M, Sasaki T. 1997. Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol. 35: 145–153

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin HX, Sasaki T. 2001. Genetic control of flowering time in rice, a short-day plant. Plant Physiol. 127: 1425–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C. 2006. Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol. Biol. 62: 247–259

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Nag Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, FX., Kim, DM., Ju, HG. et al. Mapping quantitative trait loci for awnness and yield component traits in isogenic lines derived from an Oryza sativa / O. rufipogon cross. J. Crop Sci. Biotechnol. 12, 9–15 (2009). https://doi.org/10.1007/s12892-009-0061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-009-0061-4

Key words

Navigation