Skip to main content

Advertisement

Log in

Stability Study of Materials for Electrode Supports for the Hydrogen Generation from a NaCl Aqueous Solution

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The hydrogen generation by electrolysis from seawater is one of the most promising processes for this fuel production, avoiding the use of highly dangerous KOH solution as electrolyte. There are many problems associated with this process, such as the low electrochemical efficiency and the high corrosion capacity of chloride ions present in seawater. In this work, different materials proposed as possible electrodes or electrode supports in a NaCl solution are physicochemically analyzed from a comparative point of view. Corrosion studies by salt fog testing, Raman spectroscopy, X-ray diffractometry, and electrochemical analysis were carried out in this medium, and the catalytic efficiencies towards the electrochemical hydrogen generation were comparatively evaluated. Thus, samples of Ti, Ni, AISI 316L stainless steel, and Cu showed important hydrogen current in the analyzed potentials range. Their results recorded by cyclic voltammetry and electrochemical impedance spectroscopy, in addition to the Tafel plots, confirmed to be good active catalysts for hydrogen evolution reaction. On the other hand, materials as Al and carbon cloth show moderate and low corrosion in this medium and can be used as catalysts supports. It is found that nickel not only has a high tolerance to chloride ions but also presents the highest electrochemical efficiency. Its current density at −1.5 VSCE is 3.22 × 10–2 A cm−2, followed in order by AISI 316L stainless steel with high Ni content (1.33 × 10–2 A cm−2), concluding that Ni samples constitute the appropriate material for cathodes to be used in electrolyzers working with seawater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.Z. Baykara, Int. J. Hydrogen Energ. 43, 10605 (2018)

    Article  CAS  Google Scholar 

  2. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, Int. J. Hydrogen Energ. 42, 30470 (2017)

    Article  CAS  Google Scholar 

  3. C. Dicle¸ M. Yıldız, Int. J. Hydrogen Energ. 42, 23395 (2017)

  4. H.K. Abdel-Aal, K.M. Zohdy, M. Abdel Kareem, The Open Fuel Cells J. 3, 1 (2010)

  5. A.M. Abdalla, Sh. Hossain, O.B. Nisfindy, A.T. Azad, M. Dawood, A.K. Azad, Energy Convers. Manage. 165, 602 (2018)

    Article  CAS  Google Scholar 

  6. S. Dresp, F. Dionigi, S. Loos, J. Ferreira de Araujo, C. Spöri, M. Gliech, H. Dau, P. Strasser, Adv. Energy Mater. 1800338 (2018)

  7. J.E. Bennett, Int. J. Hydrogen Energ. 5, 401 (1980)

    Article  CAS  Google Scholar 

  8. E.A. Franceschini, G.I. Lacconi, H.R. Corti, J. Energy Chem. 26, 466 (2017)

    Article  Google Scholar 

  9. E.A. Franceschini, M.J. Gómez, G.I. Lacconi, J. Energy Chem. 29, 79 (2019)

    Article  Google Scholar 

  10. W. Wang, Xu. Shaoping, K. Wang, J. Liang, W. Zhang, Fuel Process. Technol. 189, 74 (2019)

    Article  CAS  Google Scholar 

  11. J. Wang, S. Lei, L. Liang, Appl. Surf. Sci. 530, 147187 (2020)

    Article  CAS  Google Scholar 

  12. Ch. Ray, SCh. Lee, K.V. Sankar, B. Jin, J. Lee, J.H. Park, SCh. Jun, A.C.S. Appl, Mater. Interfaces 9, 37739 (2017)

    Article  CAS  Google Scholar 

  13. J. Miao, F.X. Xiao, H.B. Yang, S.Y. Khoo, J. Chen, Zh. Fan, Y.Y. Hsu, H.M. Chen, H. Zhang, B. Liu, Sci. Adv. 1, 1500259 (2015)

    Article  Google Scholar 

  14. M.J. Gómez, E.A. Franceschini, G.I. Lacconi, Electrocatalysis 9, 459 (2018)

    Article  Google Scholar 

  15. S.M. Saba, M. Muller, M. Robinius, D. Stolten, Int. J. Hydrogen Energ. 43(3), 1209 (2018)

    Article  CAS  Google Scholar 

  16. Yu.S. Ponosov, S.V. Streltsov, Phys. Rev B 86, 045138 (2012)

    Article  Google Scholar 

  17. Alan Campion, Raman spectroscopy in vibrational spectroscopy of molecules on surfaces pp 345

  18. J. Chen, Q. Xiao, Lu. Zhanpeng, Ru. Xiangkun, H. Peng, Qi. Xiong, H. Li, J. Nuclear Materials 489, 137 (2017)

    Article  CAS  Google Scholar 

  19. B.C. Barlow, B. Guo, A. Situm, A.P. Grosvenor, I.J. Burgess, J. Electroanal. Chem. 853, 113559 (2019)

    Article  CAS  Google Scholar 

  20. B.S. Yeo, A.T. Bell, J. Phys. Chem. C 116(15), 8394 (2012)

    Article  CAS  Google Scholar 

  21. Y.J. Shih, Y.H. Huang, C.P. Huang, Electrochim. Acta 263, 261 (2018)

    Article  CAS  Google Scholar 

  22. T. Matijosius, S.J. Asadauskas, G. Bikulcius, A. Selskis, S. Jankauskas, J. Visniakov, I. Ignatjeva, Color. Technol. 135, 275 (2019)

    Article  CAS  Google Scholar 

  23. V.H. Castrejón-Sánchez, E. Camps, M. Camacho-López, Quantification of phase content in TiO2 thin films by Raman spectroscopy. Superficies y Vacío 27, 88 (2014)

    Google Scholar 

  24. G. Milczarek, A. Ciszewski, I. Stepniak, J. Power Sources 196, 7882 (2011)

    Article  CAS  Google Scholar 

  25. R.J. Nemanich, S.A. Solin, Phys. Rev. B 20, 392 (1979)

    Article  CAS  Google Scholar 

  26. Y. Deng, A.D. Handoko, Y. Du, Sh. Xi, B.S. Yeo, ACS Catal. 6, 2473 (2016)

    Article  CAS  Google Scholar 

  27. S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O’Mullaned, K. Kalantar-zadeh, J. Mater. Chem. C 2, 5247 (2014)

    Article  CAS  Google Scholar 

  28. J. Chen, Q. Xiao, Zh. Lu, X. Ru, H. Peng, Qi Xiong, H. Li. J. Nucl. Mater. 489, 137 (2017)

    Article  CAS  Google Scholar 

  29. C.K. Lim, Q. Liu, J. Zhou, Q. Sun, S.H. Chan, J. Power Sources 342, 79 (2017)

    Article  CAS  Google Scholar 

  30. M.J. Gómez, L.A. Diaz, E.A. Franceschini, G.I. Lacconi, G.C. Abuin, J. Appl. Electrochem. 49, 1227 (2019)

    Article  Google Scholar 

  31. M.J. Gómez, A. Loiácono, L.A. Pérez, E.A. Franceschini, G.I. Lacconi, Highly ACS Omega 4, 2206 (2019)

    Article  Google Scholar 

  32. E.A. Franceschini, G.I. Lacconi, Electrocatalysis 9, 47 (2018)

    Article  CAS  Google Scholar 

  33. G. Kreysa, B. Hakansson, P. Ekdunge, Electrochim. Acta 33, 1351 (1988)

    Article  CAS  Google Scholar 

  34. R.D. Armstrong, M. Henderson, J. Electroanal. Chem. 39, 81 (1972)

    Article  CAS  Google Scholar 

  35. E. Daftsis, N. Pagalos, A. Jannakoudakis, P. Jannakoudakis, E. Theodoridou, R. Rashkov, M. Loukaytsheva, N. Atanassov, J. Electrochem. Soc. 150, C787 (2003)

    Article  CAS  Google Scholar 

  36. C. Hitz, A. Lasia, Experimental study and modeling of impedance of the her on porous Ni electrodes. J. Electroanal. Chem. 500, 213 (2001)

    Article  CAS  Google Scholar 

  37. A. Lasia, A. Rami, J. Electroanal. Chem. 294, 123 (1990)

    Article  CAS  Google Scholar 

  38. M.J. Gomez, E.A. Franceschini, G.I. Lacconi, Electrocatalysis 9, 459 (2018)

    Article  CAS  Google Scholar 

  39. Y. Liu, M. Curioni, Z. Liu, Electrochim. Acta 264, 101 (2018)

    Article  CAS  Google Scholar 

  40. M.E.G. Lyons, M.P. Brandon, J Electroanal Chem 631, 62 (2009)

    Article  CAS  Google Scholar 

  41. ABD EL-AAL E E. Corros Sci 45, 759 (2003)

Download references

Acknowledgements

NY thanks CONICET for a doctoral fellowship. GIL and EAF are permanent research fellows of CONICET. The authors acknowledge to LANN-SNM laboratory at INFICQ for assistance in Raman measurements.

Funding

This research was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2017-0250), SECyT-UNC (CONSOLIDAR-I 33620180100825CB), Mincyt-Cordoba (GRFT2018), and CONICET (PUE2017). LD received financial support from INTI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriela I. Lacconi or Esteban A. Franceschini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 823 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ysea, N., Diaz, L.A., Lacconi, G.I. et al. Stability Study of Materials for Electrode Supports for the Hydrogen Generation from a NaCl Aqueous Solution. Electrocatalysis 12, 537–547 (2021). https://doi.org/10.1007/s12678-021-00672-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00672-9

Keywords

Navigation