Skip to main content
Log in

Impact of Response Surface Methodology–Optimized Synthesis Parameters on In vitro Anti-inflammatory Activity of Iron Nanoparticles Synthesized using Ocimum tenuiflorum Linn

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Iron nanoparticle (FeNP) synthesis was carried out using the aqueous leaf extract of Ocimum tenuiflorum Linn. (O. tenuiflorum) collected from the University Institute of Engineering & Technology campus, Maharshi Dayanand University, Rohtak. Response surface methodology (RSM) was used in the current study for optimization of three variables implying central composite design (CCD). The variables optimized for in vitro anti-inflammatory activity of synthesized FeNPs were temperature (25–45) °C, pH (2.0–8.0), and molarities (0.1–1).The anti-inflammatory activity of FeNPs ranged from 0 to 118.23 due to interaction among synthesis variables. The analysis of variance was significant at P < 0.05 and revealed that the established model was significant .The maximum in vitro anti-inflammatory activity of 118.25 was observed with 100 mg/mL concentration of FeNPs synthesized at 25 °C temperature, pH 8.0, and 0.1 M molarity. This study will form basis for use of FeNPs as a potential therapeutic solution for inflammatory problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heba Mohamed, F., et al. (2018). Review of green methods of iron nanoparticles synthesis and applications. BioNanoScience. https://doi.org/10.1007/s12668-018-0516-5.

  2. Panigrahi, S., Kundu, S., Ghosh, S. K., Nath, S., & Pal, T. (2004). General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6(4), 411–414.

    Google Scholar 

  3. Herlekar, M., Barve, S. V., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 1–9, Article ID 140614. https://doi.org/10.1155/2014/140614.

    Article  Google Scholar 

  4. Zboril, R., Mashlan, M., & Petridis, D. (2002). Iron (III) oxides from thermal processes—synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chemistry of Materials, 14, 969–982.

    Google Scholar 

  5. Miller, M. M., Prinz, G. A., Cheng, S. F., & Bounnak, S. (2002). Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor. A model for a magneto resistance-based biosensor. Applied Physics Letters, 81, 2211–2213.

    Google Scholar 

  6. Pankhurst, Q. A., Connolly, J., Jones, S. K., & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D, 36, 167–181.

    Google Scholar 

  7. Jeyadevan, B., Chinnasamy, C. N., Shinoda, K., Tohji, K., & Oka, H. (2003). Mn-Zn ferrite with higher magnetization for temperature sensitive magnetic fluid. Journal of Applied Physics, 93, 8450–8452.

    Google Scholar 

  8. Zhang, J. L., Wang, Y., Ji, H., Wei, Y. G., Wu, N. Z., Zuo, B. J., & Wang, Q. L. (2005). Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene. Journal of Catalysis, 229, 114–118.

    Google Scholar 

  9. Koh, I., Wang, X., Varughese, B., Isaacs, L., Ehrman, S. H., & English, D. S. (2006). Magnetic iron oxide nanoparticles for biorecognition, evaluation of surface coverage and activity. Journal of Physical Chemistry B, 110(4), 1553–1558.

    Google Scholar 

  10. Mahdavi, M., Ahmad, M. B., Haron, M. J., Gharayebi, Y., Shameli, K., & Nadi, B. (2013). Fabrication and characterization of SiO2/(3-aminopropyl) triethoxysilane-coated magnetite nanoparticles for lead (II) removal from aqueous solution. Journal of Inorganic and Organometallic Polymers and Materials, 23, 599–607.

    Google Scholar 

  11. Venkateswarlu, S., Kumar, N., Prathima, B., SubbaRao, Y., & Vijaya Jyothi, N. V. (2014). A novel green synthesis of Fe3O4 magnetic nanorods using Punica granatum rind extract and its application for removal of Pb(II) from aqueous environment. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2014.09.006.

  12. Wu, Y., Zeng, S., Wang, F., Megharaj, M., Naidu, R., & Chen, Z. (2015). Heterogeneous Fenton-like oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst. Separation and Purification Technology, 154, 161–167.

    Google Scholar 

  13. Wu, W., Wu, Z., Yu, T., Jiang, C., & Kim, W.-S. (2015). Recent progress on magnetic iron oxide nanoparticles, synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials, 16, 43. 023501. https://doi.org/10.1088/1468-6996/16/2/023501.

    Article  Google Scholar 

  14. Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromo thymol blue by “greener” nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19(45), 8671–8677.

    Google Scholar 

  15. Shahwan, T., Abu, S. S., Nairat, M., et al. (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 172(1), 258–266.

    Google Scholar 

  16. Kuang, Y., Wang, Q., Chen, Z., Megharaj, M., & Naidu, R. (2013). Heterogeneous Fenton-like oxidation of mono chlorobenzene using green synthesis of iron nanoparticles. Journal of Colloid and Interface Science, 410, 67–73.

    Google Scholar 

  17. Huang, L., Weng, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 117, 0.801–0.804.

    Google Scholar 

  18. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Int. J. Of Green Chem., 13, 2638–2650. https://doi.org/10.1039/C1GC15386B.

    Article  Google Scholar 

  19. Njagi, E. C., Huang, H., Stafford, L., et al. (2011). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27(1), 264–271.

    Google Scholar 

  20. Makarov, V. V., Love, A. J., Sinitsiyana, O. V., et al. (2014). Green nanotechnologies, synthesis of metal nanoparticles using plants. Acta Nature, 6(1), 35–34.

    Google Scholar 

  21. Valentin, M. V., & Makarova, S. (2014). Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir, 30, 5982–5988.

    Google Scholar 

  22. Pattanayak, M., & Nayak, P. L. (2013). Ecofriendly green synthesis of iron nano particles from various plants and spices extract. International Journal of Plant, Animal and Environmental Sciences, 3(1), 68–78 https://www.ijpaes.com/admin/php/uploads/277.

    Google Scholar 

  23. Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P. A., Albergaria, J. T., & Delerue-Matos, C. (2013). Green production of zero valent iron nanoparticles using tree leaf extracts. Science of the Total Environment, 445–446, 1–8.

    Google Scholar 

  24. Guardia, P., Perez, N., Labarta, A., et al. (2010). Controlled synthesis of iron nanoparticles over a wide range. Langmuir, 26(8), 5843–5847. https://doi.org/10.1021/la903767e.

    Article  Google Scholar 

  25. Kalabharathi, H. L., Suresha, R. N., Pragathi, B., et al. (2011). Anti inflammatory activity of fresh tulsi leaves (Ocimum sanctum) in albino rats. International Journal of Pharma and Bio Sciences, 2(4), 45–50.

    Google Scholar 

  26. Godhwani, S., Godhwani, J. L., & Vyas, D. S. (1987). Ocimum tenuiflorum. An experimental study evaluating its anti-inflammatory, analgesic and antipyretic activity in animals. Journal of Ethnopharmacology, (21), 153–163.

  27. Pattanayak, P., Pritishova, B., Debajyoti, D., & Sangram, K. (2010). Ocimum tenuiflorum Linn. A reservoir plant for therapeutic applications. An overview. Pharmacogn Rev., 4(7), 95–105.

    Google Scholar 

  28. Anbarasu, K., & Vijayalakshmi, G. (2007). Improved shelf life of protein-rich tofu using Ocimum tenuiflorum (tulsi) extracts to benefit Indian rural population. Journal of Food Science, (72), M300–05.

  29. Shishodia, S., Majumdar, S., Banerjee, S., & Aggarwal, B. B. (2003). Ursolic acid inhibits nuclear factor-kappa B activation induced by carcinogenic agents through suppression of I kappa B alpha kinase and p65 phosphorylation. Correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Research, 63, 4375–4383.

    Google Scholar 

  30. Garima, S., Riju, B., & Kunal, K. (2011). Biosynthesis of silver nanoparticles using Ocimum tenuiflorum (tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13, 2981–2988. https://doi.org/10.1007/s11051-010-0193-y.

    Article  Google Scholar 

  31. Rupali, S., Patil, Kokate Mangesh, R., & Kolekar Snjay, S. (2012). Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochimica Acta Part A, 91, 234–238.

    Google Scholar 

  32. Goutam, B., Sajal, S., & Ranjan, G. (2014). Sunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum tenuiflorum Linn. With enhanced antibacterial activity. Organic and Medicinal Chemistry Letters, 4, 18. https://doi.org/10.1186/s13588-014-0018-6.

    Article  Google Scholar 

  33. Anuradha, G., Syama Sundar, B., Ramana, M. V., Kumar, J. S., & Sujatha, T. (2014). Single step synthesis and characterization of silver nanoparticles from Ocimum tenuiflorum L. green and purple. IOSR Journal of Applied Chemistry, 7(5), II, 123–127.

    Google Scholar 

  34. Sagar, R., Thorats, P. V., & Thakre, R. (2015). Green synthesis of zinc oxide (ZnO) nanoparticles using Ocimum tenuiflorum leaves. International Journal of Science and Research, 4(5), 1225–1228.

    Google Scholar 

  35. Jiang, J., Pi, J., Jiye, & Cai. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 18 pages, Article ID 1062562. https://doi.org/10.1155/2018/1062562.

  36. Suganya, T. R., & Devasena, T. (2015). Exploring the mechanism of anti-inflammatory activity of phyto-stabilized silver nanorods. Digest Journal of Nanomaterials and Biostructures, 10(1), 277–282.

    Google Scholar 

  37. Erjaee, H., Rajaian, H., & Nazifi, S. (2017). Green synthesized silver nanoparticles. A promising anti-inflammatory and antioxidant compound. Mat Sci Ind J., 15(3), 119.

    Google Scholar 

  38. Gnanasundaram, I., & Balakrishnan, K. (2017). Synthesis and evaluation of anti-inflammatory activity of silver nanoparticles from Cissus vitiginea leaf extract. J. Nanosci. Tech., 3(3), 266–269.

    Google Scholar 

  39. Priyanka, S., Ahn, S., Kang, J.-P., Veronika, S., Huo, Y., Singh, H., Chokkaligam, M., Farh, M. E.-A., Aceituno, Ver_onica C., Kim, Y. J., & Yang, D.-C. (2018). In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata, a green synthetic approach. Artificial cells, nanomedicine, and biotechnology, 46(8), 2022–2032. https://doi.org/10.1080/21691401.2017.1408117.

    Article  Google Scholar 

  40. Abdelsalam Sara, I., & Bhatti, M. M. (2019). New insight into AuNP applications in tumour treatment and cosmetics through wavy annuli at the nanoscale. Scientific Reports, 9(1), 260. https://doi.org/10.1038/s41598-018-36459-0.

    Article  Google Scholar 

  41. Abdelsalam Sara, I., & Bhatti, M. M. (2018). The impact of impinging TiO2 nanoparticles in Prandtl nanofluid along with endoscopic and variable magnetic field effects on peristaltic blood flow. Multidiscipline Modeling in Materials and Structures, 14(3), 530–548. https://doi.org/10.1108/MMMS-08-2017-0094.

    Article  Google Scholar 

  42. Ahmadzadeh, S., Rezayi, M., Karimi-Maleh, H., & Alias, Y. (2015). Conductometric measurements of complexation study between 4-isopropylcalix[4]arene and Cr3+ cation in THF–DMSO binary solvents. Measurement, 70, 214–224.

    Google Scholar 

  43. Ahmadzadeh, S., Rezayi, M., Kassim, A., & Aghasi, M. (2015). Cesium selective polymeric membrane sensor based on p-isopropylcalix[6]arene and its application in environmental samples. RSC Advances, 00, 1–3.

    Google Scholar 

  44. Kiruba, D. S. C. G., Vinothini, G., Subramanian, N., Nehru, K., & Sivakumar, M. (2013). Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. Journal of Nanoparticle Research, 15(1), 1319.

    Google Scholar 

  45. Phumying, S., Labuayai, S., Thomas, C., Amornkitbamrung, V., Swatsitang, E., & Maensiri, S. (2013). Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Applied Physics A, 111(4), 1187–1193.

    Google Scholar 

  46. Herrera-Becerra, R., Zorrilla, C., & Ascencio, J. A. (2007). Production of iron oxide nanoparticles by a biosynthesis method, an environmentally friendly route. The Journal of Physical Chemistry, 111(44), 16147–16153.

    Google Scholar 

  47. Lopez-Tellez, G., Balderas-Hernandez, P., Barrera-Dıaz, C. E., Vilchis-Nestor, A. R., Roa-Morales, G., & Bilyeu, B. (2013). Green method to form iron oxide nano rods in orange peels for chromium (VI) reduction. Journal of Nanoscience and Nanotechnology, 13(3), 2354–2361.

    Google Scholar 

  48. Saeid, A., Ali, A., Mostafa, P., Behzad, B., & Maryam, D. (2017). Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: optimization and modelling through response surface methodology. Process Safety and Environmental Protection, 109, 538–547.

    Google Scholar 

  49. Saeid, A., & Maryam, D. (2018). Removal of acetaminophen from hospital waste water using electro –Fenton process. Environmental Earth Sciences, 77, 53.

    Google Scholar 

  50. Saeid, A., & Maryam, D. (2018). Modeling and kinetic study of electrochemical peroxidation process for mineralization of bisphenol A; a new paradigm for ground water treatment. Journal of Molecular Liquids, 254, 76–82.

    Google Scholar 

  51. Saeid, A., & Maryam, D. (2018). Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole. Chemosphere, 212, 533–539.

    Google Scholar 

  52. Mehdi, Y., Saeid, A., Majid, A., & Maryam, D. (2017). Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption. Journal of Molecular Liquids, 225, 544–553.

    Google Scholar 

  53. Ahmadzadeh, S., & Dolatabadi, M. (2018). Modeling and kinetics study of electrochemical peroxidation process for mineralization of bisphenol A; a new paradigm for groundwater treatment. Journal of Molecular Liquids, 254, 76–82.

    Google Scholar 

  54. Ahmadzadeh, S., Asadipour, A., Yoosefian, M., & Dolatabadi, M. (2017). Improved electro coagulation process using chitosan for efficient removal of cefazolin antibiotic from hospital wastewater through sweep flocculation and adsorption: kinetic and isotherm study. Desalination and Water Treatment, 92, 160–171.

    Google Scholar 

  55. Seema, C. C., & Vangalapati, M. (2011). Antioxidant, an anti-inflammatory and anti-arthritic activity of Centella asiatica extracts. Journal of Chemical. Biological and Physical Sciences Sec. B, 1(2), 260–269.

    Google Scholar 

  56. Lavanya, M. R. S. U., Harish, G., et al. (2010). Investigation of in-vitro anti-inflammatory, anti-platelet and anti-arthritic activities in the leaves of Anisomeles malabarica Linn. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 1(4), 745–752.

    Google Scholar 

  57. Pattanayak, M., & Nayak, P. L. (2014). Green synthesis of gold nanoparticles using Solanum lycopersicum (tomato) aqueous extract. World Journal of Nano Science & Technology, 3(2), 74–80. https://doi.org/10.5829/idosi.wjnst.2014.3.2.115.

    Article  Google Scholar 

  58. Herrera-Becerra, R., Zorrilla, C., Rius, J. L., & Ascencio, J. A. (2008). Appl. Phys. A: Mater. Sci. Process, 91, 241–246.

    Google Scholar 

  59. Gardea-Torresde, J. L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacamanero, S., & Jose-Yacaman, M. (1999). Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. Journal of Nanoparticle Research, 1, 397–404.

    Google Scholar 

  60. Sathishkumar, M., Krishnamurthy, S., & Yun, Y. S. (2010). Immobilization of silver nanoparticles synthesized using the Curcuma longa tuber powder extract on cotton cloth for bactericidal activity. Bioresource Technology, 101, 7958–7965.

    Google Scholar 

  61. Dubey, S. P., Lahtinen, M., & Sillanpaa, M. (2010). Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry, 45, 1065–1071.

    Google Scholar 

  62. Armendariz, V., Herrera, I., Peralta-Videa, J. R., Jose-Yacaman, M., Troiani, H., Santiago, P., & Gardea-Torresdey, J. L. (2004). Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. Journal of Nanoparticle Research, 6, 377–382.

    Google Scholar 

  63. Song, J. Y., Jang, H. K., & Kim, B. S. (2009). Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Process Biochemistry, 44, 1133–1138.

    Google Scholar 

  64. Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., & Srinivasan, K. (2011). Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 79, 594–598.

    Google Scholar 

  65. Gericke, M., & Pinches, A. (2006). Biological synthesis of metal nanoparticles. Hydrometallurgy, 83, 132–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeet Kaur.

Ethics declarations

Conflict of interest

None.

Research involving humans and animals statement

None.

Informed consent

None.

Funding statement

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M. Impact of Response Surface Methodology–Optimized Synthesis Parameters on In vitro Anti-inflammatory Activity of Iron Nanoparticles Synthesized using Ocimum tenuiflorum Linn. BioNanoSci. 10, 1–10 (2020). https://doi.org/10.1007/s12668-019-00681-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00681-5

Keywords

Navigation