Skip to main content

Advertisement

Log in

Medical and Microbial Applications of Controlled Shape of Silver Nanoparticles Prepared by Ionizing Radiation

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

New strategies are needed to develop new drugs to treat emerging infectious diseases and microbial resistance. A new effective strategy is to design drugs combined with metal nanoparticles to overcome infections of multidrug-resistant microbes. In this study, we investigated the anti-microbial and anticancer properties of three differently shaped silver nanoparticles (S1-S3) against a wide range of microorganisms as well as two types of carcinoma cells. The three forms of silver nanoparticles (Ag-NPs) were investigated against Coxsackievirus B3 and 5 fungal strains (Aspergillus fumigatus, Candida albicans, Geotricum candidum, Aspergillus niger, Trichophyton mentagrophytes) while for antibacterial and anticancer evaluation, S2 was used. Our results demonstrated that all forms had antiviral activities against virus replication with TI ranging from 0.4 to 30 and reduction in virus titers ranged from 0 to 4 log10 TCID50. On the other hand, only Ag-NPs S2 exhibited antifungal activities, mostly against Trichophyton mentagrophytes. Also, Ag-NP S2 showed antibacterial effects against some gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Klebsiella pneumonia, Salmonella typhi, and Enterobacter cloacae) and some positive bacteria (Bacillus subtilis, Staphylococcus aureus, Streptococcus mutans). Furthermore, Ag-NPs displayed a significant cytotoxic potential in cancerous Hep-G2 and A549 cell lines. The results obtained demonstrate that Ag-NPs can be utilized as strong antimicrobial and anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He, X., Wang, F., Liu, H., Li, J., & Niu, L. (2017). Synthesis of quartz crystals supporting ag nanoparticle powder with enhanced antibacterial properties. Surfaces and Interfaces, 6, 122–126.

    Article  Google Scholar 

  2. Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2015). Enhanced antimicrobial activity of silver nanoparticles with controlled particle size by pH variation. Powder Technology, 269, 110–117.

    Article  Google Scholar 

  3. Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H., & Yacaman, M. J. (2005). Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 3(1), 6.

    Article  Google Scholar 

  4. Zhao, Y., Chen, A., & Liang, S. (2013). Shape-controlled synthesis of silver nanocrystals via γ-irradiation in the presence of poly (vinyl pyrrolidone). Journal of Crystal Growth, 372, 116–120.

    Article  Google Scholar 

  5. Sun, Y., Yin, Y., Mayers, B. T., Herricks, T., & Xia, Y. (2002). Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chemistry of Materials, 14(11), 4736–4745.

    Article  Google Scholar 

  6. Belloni, J. (1996). Metal nanocolloids. Current Opinion in Colloid & Interface Science, 1(2), 184–196.

    Article  Google Scholar 

  7. Henglein, A. (1993). Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. The Journal of Physical Chemistry, 97(21), 5457–5471.

    Article  Google Scholar 

  8. Marignier, J. L., Belloni, J., Delcourt, M. O., & Chevalier, J. P. (1985). Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction. Nature, 317(6035), 344.

    Article  Google Scholar 

  9. Duhamel, B. G. (1912). Electric metallic colloids and their therapeutic applications. Lancet, 1, 89–90.

    Article  Google Scholar 

  10. Sintubin, L., Verstraete, W., & Boon, N. (2012). Biologically produced nanosilver: Current state and future perspectives. Biotechnology and Bioengineering, 109(10), 2422–2436.

    Article  Google Scholar 

  11. Edwards-Jones, V. (2009). The benefits of silver in hygiene, personal care and healthcare. Letters in Applied Microbiology, 49(2), 147–152.

    Article  Google Scholar 

  12. Schmid, G. (1992). Large clusters and colloids. Metals in the embryonic state. Chemical Reviews, 92(8), 1709–1727.

    Article  Google Scholar 

  13. Li, Y., Leung, P., Yao, L., Song, Q. W., & Newton, E. (2006). Antimicrobial effect of surgical masks coated with nanoparticles. Journal of Hospital Infection, 62(1), 58–63.

    Article  Google Scholar 

  14. Wijnhoven, S. W., Peijnenburg, W. J., Herberts, C. A., Hagens, W. I., Oomen, A. G., et al. (2009). Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3(2), 109–138.

    Article  Google Scholar 

  15. Xiang, D. X., Chen, Q., Pang, L., & Zheng, C. L. (2011). Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro. Journal of Virological Methods, 178(1–2), 137–142.

    Article  Google Scholar 

  16. Trefry, J. C., & Wooley, D. P. (2012). Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay. Journal of Virological Methods, 183(1), 19–24.

    Article  Google Scholar 

  17. Rogers, J. V., Parkinson, C. V., Choi, Y. W., Speshock, J. L., & Hussain, S. M. (2008). A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Research Letters, 3(4), 129.

    Article  Google Scholar 

  18. Lu, L., Sun, R. W., Chen, R., Hui, C. K., Ho, C. M., et al. (2008). Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Therapy, 13(2), 253.

    Google Scholar 

  19. Sharma, V., Kaushik, S., Pandit, P., Dhull, D., Yadav, J. P., et al. (2019). Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Applied Microbiology and Biotechnology, 103(2), 881–891.

    Article  Google Scholar 

  20. El-Mohamady, R. S., Ghattas, T. A., Zawrah, M. F., & El-Hafeiz, Y. A. (2018). Inhibitory effect of silver nanoparticles on bovine herpesvirus-1. Int J Vet Sci Med, 6(2), 296.

    Article  Google Scholar 

  21. Kim, D. S., & Nam, J. H. (2010). Characterization of attenuated coxsackievirus B3 strains and prospects of their application as live-attenuated vaccines. Expert Opinion on Biological Therapy, 10(2), 179–190.

    Article  Google Scholar 

  22. Huber, M., Selinka, H. C., & Kandolf, R. (1997). Tyrosine phosphorylation events during coxsackievirus B3 replication. Journal of Virology, 71(1), 595–600.

    Google Scholar 

  23. Fechner, H., Pinkert, S., Geisler, A., Poller, W., & Kurreck, J. (2011). Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections. Molecules, 16(10), 8475–8503.

    Article  Google Scholar 

  24. Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology and Medicine, 5(4), 382–386.

    Article  Google Scholar 

  25. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.

    Article  Google Scholar 

  26. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712–1720.

    Article  Google Scholar 

  27. Lazar, V. (2011). Quorum sensing in biofilms–how to destroy the bacterial citadels or their cohesion/power? Anaerobe, 17(6), 280–285.

    Article  Google Scholar 

  28. Taraszkiewicz, A., Fila, G., Grinholc, M., & Nakonieczna, J. (2012). Innovative strategies to overcome biofilm resistance. BioMed Research International, 2013, 150653.

    Google Scholar 

  29. Biel, M. A., Sievert, C., Usacheva, M., Teichert, M., & Balcom, J. (2011). Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms. In International forum of allergy & rhinology (Vol. 1, no. 5, pp. 329-334). Hoboken: Wiley Subscription Services, Inc., A Wiley Company.

  30. Branco dos Santos, F., Du, W., & Hellingwerf, K. J. (2014). Synechocystis: not just a plug-bug for CO2, but a green E. coli. Frontiers in Bioengineering and Biotechnology, 2, 36.

    Article  Google Scholar 

  31. Mijnendonckx, K., Leys, N., Mahillon, J., Silver, S., & Van Houdt, R. (2013). Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals, 26(4), 609–621.

    Article  Google Scholar 

  32. Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., et al. (2014). Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Applied Microbiology and Biotechnology, 98(5), 1951–1961.

    Article  Google Scholar 

  33. Smith, R. A., Manassaram-Baptiste, D., Brooks, D., Doroshenk, M., Fedewa, S., et al. (2015). Cancer screening in the United States, 2015: A review of current American cancer society guidelines and current issues in cancer screening. CA: a Cancer Journal for Clinicians, 65(1), 30–54.

    Google Scholar 

  34. Locatelli, E., Naddaka, M., Uboldi, C., Loudos, G., Fragogeorgi, E., et al. (2014). Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine, 9(6), 839–849.

    Article  Google Scholar 

  35. Arokiyaraj, S., Arasu, M. V., Vincent, S., Prakash, N. U., Choi, S. H., et al. (2014). Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study. International Journal of Nanomedicine, 9, 379.

    Article  Google Scholar 

  36. Vasanth, K., Ilango, K., MohanKumar, R., Agrawal, A., & Dubey, G. P. (2014). Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids and Surfaces B: Biointerfaces, 117, 354–359.

    Article  Google Scholar 

  37. Farah, M. A., Ali, M. A., Chen, S. M., Li, Y., Al-Hemaid, F. M., et al. (2016). Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids and Surfaces B: Biointerfaces, 141, 158–169.

    Article  Google Scholar 

  38. Gengan, R. M., Anand, K., Phulukdaree, A., & Chuturgoon, A. (2013). A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids and Surfaces B: Biointerfaces, 105, 87–91.

    Article  Google Scholar 

  39. Afify, T. A., Saleh, H. H., & Ali, Z. I. (2017). Structural and morphological study of gamma-irradiation synthesized silver nanoparticles. Polymer Composites, 38(12), 2687–2694.

    Article  Google Scholar 

  40. Shaheen, M., Borsanyiova, M., Mostafa, S., Sarkar, M., Bopegamage, S., et al. (2017). In vitro and in vivo evaluation of Bauhinia variegata extracts to prevent coxsackievirus B3 infection. Journal of Proteomics & Bioinformatics., 10, 3.

    Article  Google Scholar 

  41. Báidez, A. G., Gómez, P., Del Río, J. A., & Ortuño, A. (2007). Dysfunctionality of the xylem in Olea europaea L. plants associated with the infection process by Verticillium dahliae Kleb. Role of phenolic compounds in plant defense mechanism. Journal of Agricultural and Food Chemistry, 55(9), 3373–3377.

    Article  Google Scholar 

  42. Karber, G. (1931). Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche [a contribution to the collective treatment of a pharmacological experimental series]. Archiv für experimentelle Pathologie und Pharmakologie, 162, 480.

    Google Scholar 

  43. Clinical and Laboratory Standards Institute. (2008). Method for antifungal disk diffusion susceptibility testing of yeasts: approved standard M44-A2. Wayne: Clinical and Laboratory Standards Institute.

    Google Scholar 

  44. de Vasconcelos Júnior, A. A., Menezes, E. A., Cunha, F. A., dos Santos Oliveira, M. D. C., Braz, B. H. L., Capelo, L. G., & Silva, C. L. F. Comparação entre microdiluição e disco difusão para o teste de susceptibilidade aos antifúngicos contra Candida spp. Semina: Ciências Biológicas e da Saúde, 33(1), 135–142.

  45. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63.

    Article  Google Scholar 

  46. Cooper, L. T., Jr. (2009). Myocarditis. New England Journal of Medicine, 360(15), 1526–1538.

    Article  Google Scholar 

  47. Liu, P., Aitken, K., Kong, Y. Y., Opavsky, M. A., Martino, T., et al. (2000). The tyrosine kinase p56 lck is essential in coxsackievirus B3-mediated heart disease. Nature Medicine, 6(4), 429.

    Article  Google Scholar 

  48. Liu, P. P., & Mason, J. W. (2001). Advances in the understanding of myocarditis. Circulation, 104(9), 1076–1082.

    Article  Google Scholar 

  49. Maekawa, Y., Ouzounian, M., Opavsky, M. A., & Liu, P. P. (2007). Connecting the missing link between dilated cardiomyopathy and viral myocarditis: virus, cytoskeleton, and innate immunity.

    Book  Google Scholar 

  50. Chen, T. C., Weng, K. F., Chang, S. C., Lin, J. Y., Huang, P. N., & Shih, S. R. (2008). Development of antiviral agents for enteroviruses. Journal of Antimicrobial Chemotherapy, 62(6), 1169–1173.

    Article  Google Scholar 

  51. De Palma, A. M., Vliegen, I., De Clercq, E., & Neyts, J. (2008). Selective inhibitors of picornavirus replication. Medicinal Research Reviews, 28(6), 823–884.

    Article  Google Scholar 

  52. Turner, R. B. (2001). The treatment of rhinovirus infections: progress and potential. Antiviral Research, 49(1), 1–14.

    Article  MathSciNet  Google Scholar 

  53. Chen, N., Zheng, Y., Yin, J., Li, X., & Zheng, C. (2013). Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. Journal of Virological Methods, 193(2), 470–477.

    Article  Google Scholar 

  54. Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., et al. (2013). Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine, 8, 4303.

    Google Scholar 

  55. Park, S., Ko, Y. S., Lee, S. J., Lee, C., Woo, K., et al. (2018). Inactivation of influenza a virus via exposure to silver nanoparticle-decorated silica hybrid composites. Environmental Science and Pollution Research, 25(27), 27021–27030.

    Article  Google Scholar 

  56. Trefry, J. C., & Wooley, D. P. (2013). Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism. Journal of Biomedical Nanotechnology, 9(9), 1624–1635.

    Article  Google Scholar 

  57. Khandelwal, N., Kaur, G., Kumar, N., & Tiwari, A. (2014). Application of silver nanoparticles in viral inhibition: a new hope for antivirals. Digest Journal of Nanomaterials & Biostructures (DJNB), 9(1).

  58. Lara, H. H., Ixtepan-Turrent, L., Garza-Treviño, E. N., & Rodriguez-Padilla, C. (2010). PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. Journal of Nanbiotechnology, 8, 15–25.

    Article  Google Scholar 

  59. Hartsel, S., & Bolard, J. (1996). Amphotericin B: new life for an old drug. Trends in Pharmacological Sciences, 17(12), 445–449.

    Article  Google Scholar 

  60. Bonilla, J. J. A., Guerrero, D. J. P., Suárez, C. I. S., López, C. C. O., & Sáez, R. G. T. (2015). In vitro antifungal activity of silver nanoparticles against fluconazole-resistant Candida species. World Journal of Microbiology and Biotechnology, 31(11), 1801–1809.

    Article  Google Scholar 

  61. Kubyshkin, A., Chegodar, D., Katsev, A., Petrosyan, A., Krivorutchenko, Y., et al. (2016). Antimicrobial effects of silver nanoparticles stabilized in solution by sodium alginate. Biochemistry & Molecular Biology Journal, 2(2).

  62. Gomaa, E. Z., Housseiny, M. M., & Omran, A. A. A. K. (2019). Fungicidal efficiency of Silver and copper nanoparticles produced by Pseudomonas fluorescens ATCC 17397 against four Aspergillus species: a molecular study. Journal of Cluster, 30(1), 181–196.

    Article  Google Scholar 

  63. Panáček, A., Kolář, M., Večeřová, R., Prucek, R., Soukupová, J., et al. (2009). Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 30(31), 6333–6340.

    Article  Google Scholar 

  64. Pereira, L., Dias, N., Carvalho, J., Fernandes, S., Santos, C., et al. (2014). Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against T richophyton rubrum. Journal of Applied Microbiology, 117(6), 1601–1613.

    Article  Google Scholar 

  65. Rai, M., Ingle, A. P., Gade, A. K., Duarte, M. C. T., & Duran, N. (2015). Three Phoma spp. synthesised novel silver nanoparticles that possess excellent antimicrobial efficacy. IET Nanobiotechnology, 9(5), 280–287.

    Article  Google Scholar 

  66. Selvaraj, M., Pandurangan, P., Ramasami, N., Rajendran, S. B., Sangilimuthu, S. N., & Perumal, P. (2014). Highly potential antifungal activity of quantum-sized silver nanoparticles against Candida albicans. Applied Biochemistry and Biotechnology, 173(1), 55–66.

    Article  Google Scholar 

  67. Xia, Z. K., Ma, Q. H., Li, S. Y., Zhang, D. Q., Cong, L., Tian, Y. L., & Yang, R. Y. (2016). The antifungal effect of silver nanoparticles on Trichosporon asahii. Journal of Microbiology, Immunology and Infection, 49(2), 182–188.

    Article  Google Scholar 

  68. Dai, X., Guo, Q., Zhao, Y., Zhang, P., Zhang, T., et al. (2016). Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing. ACS Applied Materials & Interfaces, 8(39), 25798–25807.

    Article  Google Scholar 

  69. Aini, A. N., Al Farraj, D. A., Endarko, E., Rubiyanto, A., & Nur, H. (2019). A new green method for the synthesis of silver nanoparticles and their antibacterial activities against gram-positive and gram-negative bacteria. Journal of the Chinese Chemical Society, 1–8.

  70. Hsueh, Y. H., Lin, K. S., Ke, W. J., Hsieh, C. T., Chiang, C. L., et al. (2015). The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released ag+ ions. PLoS One, 10(12), e0144306.

    Article  Google Scholar 

  71. Khan, M., Khan, S. T., Khan, M., Adil, S. F., Musarrat, J., et al. (2014). Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant. International Journal of Nanomedicine, 9, 3551.

    Google Scholar 

  72. Lee, W., Kim, K. J., & Lee, D. G. (2014). A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals, 27(6), 1191–1201.

    Article  Google Scholar 

  73. Okafor, F., Janen, A., Kukhtareva, T., Edwards, V., & Curley, M. (2013). Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International Journal of Environmental Research and Public Health, 10(10), 5221–5238.

    Article  Google Scholar 

  74. Prema, P., Thangapandiyan, S., & Immanuel, G. (2017). CMC stabilized nano silver synthesis, characterization and its antibacterial and synergistic effect with broad spectrum antibiotics. Carbohydrate Polymers, 158, 141–148.

    Article  Google Scholar 

  75. Salem, W., Leitner, D. R., Zingl, F. G., Schratter, G., Prassl, R., et al. (2015). Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. International Journal of Medical Microbiology, 305(1), 85–95.

    Article  Google Scholar 

  76. Sheikholeslami, S., Mousavi, S. E., Ashtiani, H. R. A., Doust, S. R. H., & Rezayat, S. M. (2016). Antibacterial activity of silver nanoparticles and their combination with zataria multiflora essential oil and methanol extract. Jundishapur Journal of Microbiology, 9(10), e36070.

    Article  Google Scholar 

  77. Dibrov, P., Dzioba, J., Gosink, K. K., & Häse, C. C. (2002). Chemiosmotic mechanism of antimicrobial activity of ag+ in Vibrio cholerae. Antimicrobial Agents and Chemotherapy, 46(8), 2668–2670.

    Article  Google Scholar 

  78. Dragieva, I., Stoeva, S., Stoimenov, P., Pavlikianov, E., & Klabunde, K. (1999). Complex formation in solutions for chemical synthesis of nanoscaled particles prepared by borohydride reduction process. Nanostructured Materials, 12(1–4), 267–270.

    Article  Google Scholar 

  79. Hamouda, T., Myc, A., Donovan, B., Shih, A. Y., Reuter, J. D., et al. (2001). A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiological Research, 156(1), 1–7.

    Article  Google Scholar 

  80. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. Coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182.

    Article  Google Scholar 

  81. Yamanaka, M., Hara, K., & Kudo, J. (2005). Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Applied and Environmental Microbiology, 71(11), 7589–7593.

    Article  Google Scholar 

  82. Zhu, B., Li, Y., Lin, Z., Zhao, M., Xu, T., Wang, C., et al. (2016). Silver nanoparticles induce HePG-2 cells apoptosis through ROS-mediated signaling pathways. Nanoscale Research Letters, 11(1), 198.

    Article  Google Scholar 

  83. Kruszewski, M., Brzoska, K., Brunborg, G., Asare, N., Dobrzyńska, et al. (2011). Toxicity of silver nanomaterials in higher eukaryotes. Advances in Molecular Toxicology, 5, 179–218 Elsevier.

    Article  Google Scholar 

  84. AshaRani, P. V., Low Kah Mun, G., Hande, M. P., & Valiyaveettil, S. (2008). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2), 279–290.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed N. F. Shaheen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, M.N.F., El-hadedy, D.E. & Ali, Z.I. Medical and Microbial Applications of Controlled Shape of Silver Nanoparticles Prepared by Ionizing Radiation. BioNanoSci. 9, 414–422 (2019). https://doi.org/10.1007/s12668-019-00622-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00622-2

Keywords

Navigation