Skip to main content

Advertisement

Log in

A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Silver nanoparticles are known to have antimicrobial properties and have been used extensively in medicine, although the mechanism(s) of action have not yet been clearly established. In the present study, the findings suggest a novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli, namely, the induction of a bacterial apoptosis-like response. We propose a possible mechanism for the bacterial apoptosis-like response that includes the following: accumulation of reactive oxygen species (ROS) (detected with H2DCFDA staining), increased intracellular calcium levels (detected with Fura-2 AM), phosphatidylserine exposure in the outer membrane (detected with Annexin V) which is the hallmarks of early apoptosis, disruption of the membrane potential [detected with DiBAC4(3)], activation of a bacterial caspase-like protein (detected by FITC-VAD-FMK staining) and DNA degradation (detected with TUNEL assay) which is the hallmarks of late apoptosis in bacterial cells treated with silver nanoparticles. We also performed RecA expression assay with western blotting and observed activation of SOS response to repair the damaged DNA. To summarize, silver nanoparticles are involved in the apoptosis-like response in E. coli and the novel mechanisms which were identified in this study, suggest that silver nanoparticles may be an effective antimicrobial agent with far lower propensity for inducing microbial resistance than antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arduino DM, Esteves AR, Domingues AF, Pereira CM, Cardoso SM, Oliveira CR (2009) ER-mediated stress induces mitochondrial-dependent caspase activation in NT2 neuron-like cells. BMB Rep 42:719–724

    Article  CAS  PubMed  Google Scholar 

  • Atiyeh BS, Costaqliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–148

    Article  PubMed  Google Scholar 

  • Bos J, Yakhnina AA, Gitai Z (2012) BapE DNA endonuclease induces an apoptotic-like response to DNA damage in Caulobacter. Proc Natl Acad Sci USA 109:18096–18101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bosetti M, Massè A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23:887–892

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti T, Das S, Mondal M, Roychoudhury S, Chakraborti S (1999) Oxidant, mitochondria and calcium: an overview. Cell Signal 11:77–85

    Article  CAS  PubMed  Google Scholar 

  • Costa V, Moradas-Ferreira P (2001) Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into aging, apoptosis and disease. Mol Aspects Med 22:217–246

    Article  CAS  PubMed  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dominguez DC (2004) Calcium signaling in bacteria. Mol Microbiol 54:291–297

    Article  CAS  PubMed  Google Scholar 

  • Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ (2012) Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46:561–572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135

    Article  PubMed Central  PubMed  Google Scholar 

  • Fonville NC, Bates D, Hastings PJ, Hanawalt PC, Rosenberg SM (2010) Role of RecA and the SOS response in thymineless death in Escherichia coli. PLoS Genet 6:e1000865

    Article  PubMed Central  PubMed  Google Scholar 

  • Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC (2012) Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 336:315–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furuya EY, Lowy FD (2006) Antimicrobial-resistant bacteria in the community setting. Nat Rev Microbiol 4:36–45

    Article  CAS  PubMed  Google Scholar 

  • Hakansson AP, Roche-Hakansson H, Mossberg AK, Svanborg C (2011) Apoptosis-like death in bacteria induced HAMLET, a human milk lipid-protein complex. PLoS ONE 6:e17717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281:9–19

    Article  CAS  PubMed  Google Scholar 

  • Herrera M, Carrion P, Baca P, Liebana J, Castillo A (2001) In vitro antibacterial activity of glass-ionomer cements. J Clin Pediatr Dent 104:141–148

    CAS  Google Scholar 

  • Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61:1719–1726

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski W, Biliński T, Bartosz G (2000) Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med 28:659–664

    Article  CAS  PubMed  Google Scholar 

  • Jones SA, Bowler PG, Walker M, Parsons D (2004) Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen 12:288–294

    Article  PubMed  Google Scholar 

  • Kamenšek S, Podlesek Z, Gillor O, Zgur-Bertok D (2010) Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogeneous expression. BMC Microbiol 10:283

    Article  PubMed Central  PubMed  Google Scholar 

  • Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I Early uses. Burns 33:117–138

    Article  Google Scholar 

  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  • Kyrylkova K, Kyryachenko S, Leid M, Kioussi C (2012) Detection of apoptosis by TUNEL assay. Methods Mol Biol 887:41–47

    Article  CAS  PubMed  Google Scholar 

  • Labat-Moleur F, Guillermet C, Lorimier P, Robert C, Lantuejoul S, Brambilla E, Negoescu A (1998) TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J Histochem Cytochem 46:327–334

    Article  CAS  PubMed  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Liao RS, Rennie RP, Talbot JA (1999) Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob Agents Chemother 43:1034–1041

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ludovico P, Madeo F, Silva MT (2005) Yeast programmed cell death: an intricate puzzle. IUBMB Life 57:129–135

    Article  CAS  PubMed  Google Scholar 

  • Madeo F, Fröhlich E, Fröhlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Fröhlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917

    Article  CAS  PubMed  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Maul RW, Sutton MD (2005) Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 187:7607–7618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ (2013) Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med 4:190ra81

    Google Scholar 

  • Nagata A (1997) Apoptosis by death factor. Cell 88:355–365

    Article  CAS  PubMed  Google Scholar 

  • Phillips AJ, Sudbery I, Ramsdale M (2003) Apoptosis induced by environmental stresses and amphothericin B in Candida albicans. Proc Natl Acad Sci USA 100:14327–14332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of microbials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR (2011) Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp 50:2597

    PubMed  Google Scholar 

  • Sanchez L (2001) TCA protein precipitation. Protocols on line. http://www.its.caltech.edu/~bjorker/Protocols/TCA_ppt_protocol.pdf. Accessed 5 Aug 2014

  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as a reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    Article  CAS  PubMed  Google Scholar 

  • Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  CAS  PubMed  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  • van den Eijnde SM, Boshart L, Baehrecke EH, De Zeeuw CI, Reutelingsperger CP, Vermeij-Keers C (1998) Cell surface exposure of phosphatidylserine during apoptosis is phylogenetically conserved. Apoptosis 3:9–16

    Article  PubMed  Google Scholar 

  • Vercammen D, Declercq W, Vandenabeele P, Van Breusegem F (2007) Are metacaspases caspases? J Cell Biol 179:375–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verhoven B, Schlegel RA, Williamson P (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 182:1597–1601

    Article  CAS  PubMed  Google Scholar 

  • Widlak P, Li P, Wang X, Garrard WT (2000) Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J Biol Chem 275:8226–8232

    Article  CAS  PubMed  Google Scholar 

  • Yoon MJ, Kim EH, Kwon TK, Park SA, Choi KS (2012) Simultaneous mitochondrial Ca2+ overload and proteasomal inhibition are responsible for the induction of paraptosis in malignant breast cancer cells. Cancer Lett 324:197–209

    Article  CAS  PubMed  Google Scholar 

  • Zherebitskaya E, Schapansky J, Akude E, Smith DR, Van der Ploeg R, Solovyova N, Verkhratsky A, Fernyhough P (2012) Sensory neurons derived from diabetic rats have diminished internal Ca2+ stores linked to impaired re-uptake by the endoplasmic reticulum. ASN Neuro 4:e00072

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ008158), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Gun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Kim, KJ. & Lee, D.G. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli . Biometals 27, 1191–1201 (2014). https://doi.org/10.1007/s10534-014-9782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9782-z

Keywords

Navigation