Skip to main content

Advertisement

Log in

Evaluation of the Cytotoxic and Antioxidant Activity of Phyto-synthesized Silver Nanoparticles Using Cassia angustifolia Flowers

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present study reports an eco-friendly phyto-synthesis of silver nanoparticles (AgNPs) using aqueous flower extract of Cassia angustifolia. Preliminarily, the synthesis of AgNPs from flower extract was visually confirmed by color change. Further formation, shape, size, and stability of the synthesized AgNPs were characterized by UV-visible spectroscopy, SEM, EDX, XRD, FT-IR, DLS, and zeta potential analyses. SEM images showed that the synthesized AgNPs were spherical in shape with an average size of 10–80 nm. Phyto-chemical analysis and FT-IR studies confirmed the role of phyto-compounds in the flower extract for the capping, formation, reduction, and stabilization of AgNPs. The antioxidant ability of AgNPs and plant extract was evaluated by DPPH, H2O2, and FRAP assays. The percentage of antioxidant activity was increased with increasing concentration of AgNPs. In addition, cytotoxic activity of the AgNPs was evaluated in human breast cancer cells (MCF 7). Phyto-synthesized AgNPs showed dose-depended manner (IC50 − 73.82 ± 0.50 μg/mL) of cytotoxic activity against MCF 7 cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sundararajan, B., Mahendran, G., Thamaraiselvi, R., & Kumari, B. R. (2016). Biological activities of synthesized silver nanoparticles from Cardiospermum halicacabum L. Bulletin of Materials Science, 39, 423–431.

    Article  Google Scholar 

  2. Ankamwar, B., Damle, C., Ahmad, A., & Sastry, M. (2005). Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. Journal of Nanoscience and Nanotechnology, 5, 1665–1671.

    Article  Google Scholar 

  3. Siamaki, A. R., Abd El Rahman, S. K., Abdelsayed, V., El-Shall, M. S., & Gupton, B. F. (2011). Microwave-assisted synthesis of palladium nanoparticles supported on graphene: A highly active and recyclable catalyst for carbon–carbon cross-coupling reactions. Journal of Catalysis, 279, 1–11.

    Article  Google Scholar 

  4. Starowicz, M., Stypuła, B., & Banaś, J. (2006). Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 8, 227–230.

    Article  Google Scholar 

  5. Talebi, J., Halladj, R., & Askari, S. (2010). Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate. Journal of Materials Science, 45, 3318–3324.

    Article  Google Scholar 

  6. Bae, D. S., Kim, E. J., Bang, J. H., Kim, S. W., Han, K. S., Lee, J. K., & Adair, J. H. (2005). Synthesis and characterization of silver nanoparticles by a reverse micelle process. Metals and Materials International, 11, 291–294.

    Article  Google Scholar 

  7. Temgire, M. K., & Joshi, S. S. (2004). Optical and structural studies of silver nanoparticles. Radiation Physics and Chemistry, 71, 1039–1044.

    Article  Google Scholar 

  8. Jin, R., Cao, Y., Mirkin, C. A., Kelly, K. L., Schatz, G. C., & Zheng, J. G. (2001). Photoinduced conversion of silver nanospheres to nanoprisms. Science, 294, 1901–1903.

    Article  Google Scholar 

  9. Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific journal of tropical biomedicine, 2, 574–580.

  10. Rout, Y., Behera, S., Ojha, A. K., & Nayak, P. L. (2012). Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. Journal of Microbiology and Antimicrobials, 4, 103–109.

    Article  Google Scholar 

  11. Verma, D. K., Hasan, S. H., & Banik, R. M. (2016). Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. Journal of Photochemistry and Photobiology B: Biology, 155, 51–59.

    Article  Google Scholar 

  12. Vijayan, R., Joseph, S., & Mathew, B. (2018). Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnology, 12, 850–856.

    Article  Google Scholar 

  13. Abbasi, E., Milani, M., Fekri Aval, S., Kouhi, M., Akbarzadeh, A., Tayefi Nasrabadi, H., Nikasa, P., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K., & Samiei, M. (2016). Silver nanoparticles: Synthesis methods, bio-applications and properties. Critical Reviews in Microbiology, 42, 173–180.

    Google Scholar 

  14. Kim, C. G., Castro-Aceituno, V., Abbai, R., Lee, H. A., Simu, S. Y., Han, Y., & Yang, D. C. (2018). Caspase-3/MAPK pathways as main regulators of the apoptotic effect of the phyto-mediated synthesized silver nanoparticle from dried stem of Eleutherococcus senticosus in human cancer cells. Biomedicine & Pharmacotherapy, 99, 128–133.

    Article  Google Scholar 

  15. Manivasagan, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S. K. (2013). Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Research International, 2013, 1–9.

    Google Scholar 

  16. Das, R., Gang, S., & Nath, S. S. (2011). Preparation and antibacterial activity of silver nanoparticles. Journal of Biomaterials and Nanobiotechnology, 2, 472–475.

    Article  Google Scholar 

  17. Elgorban, A. M., Al-Rahmah, A. N., Sayed, S. R., Hirad, A., Mostafa, A. A. F., & Bahkali, A. H. (2016). Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnology and Biotechnological Equipment, 30, 299–304.

    Article  Google Scholar 

  18. Bethu, M. S., Netala, V. R., Domdi, L., Tartte, V., & Janapala, V. R. (2018). Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: An insight into the mechanism. Artificial cells, Nanomedicine, and Biotechnology, 1–11. https://doi.org/10.1080/21691401.2017.1414824.

  19. Bahrami-Teimoori, B., Nikparast, Y., Hojatianfar, M., Akhlaghi, M., Ghorbani, R., & Pourianfar, H. R. (2017). Characterisation and antifungal activity of silver nanoparticles biologically synthesised by Amaranthus retroflexus leaf extract. Journal of Experimental Nanoscience, 12, 129–139.

    Article  Google Scholar 

  20. Lade, B. D., & Patil, A. S. (2017). Silver nano fabrication using leaf disc of Passiflora foetida Linn. Applied Nanoscience, 7, 181–192.

    Article  Google Scholar 

  21. Sulaiman, G. M., Mohammed, W. H., Marzoog, T. R., Al-Amiery, A. A. A., Kadhum, A. A. H., & Mohamad, A. B. (2013). Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pacific Journal of Tropical Biomedicine, 3, 58–63.

    Article  Google Scholar 

  22. Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2015). Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities. Journal of Photochemistry and Photobiology B: Biology, 146, 1–9.

    Article  Google Scholar 

  23. Patil, S., Chaudhari, G., Paradeshi, J., Mahajan, R., & Chaudhari, B. L. (2017). Instant green synthesis of silver-based herbo-metallic colloidal nanosuspension in Terminalia bellirica fruit aqueous extract for catalytic and antibacterial applications. 3 Biotech, 7, 36. https://doi.org/10.1007/s13205-016-0589-1.

    Article  Google Scholar 

  24. Sasikala, A., Rao, M. L., Savithramma, N., & Prasad, T. N. V. K. V. (2015). Synthesis of silver nanoparticles from stem bark of Cochlospermum religiosum (L.) Alston: an important medicinal plant and evaluation of their antimicrobial efficacy. Applied Nanoscience, I, 827–835.

    Article  Google Scholar 

  25. Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A., & Abdel-Wahhab, M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18, 356–363.

    Article  Google Scholar 

  26. Vivek, R., Thangam, R., Muthuchelian, K., Gunasekaran, P., Kaveri, K., & Kannan, S. (2012). Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochemistry, 47, 2405–2410.

    Article  Google Scholar 

  27. Pattanayak, S., Mollick, M. M. R., Maity, D., Chakraborty, S., Dash, S. K., Chattopadhyay, S., & Chakraborty, M. (2015). Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications. Journal of Saudi Chemical Society, 21, 673–684.

    Article  Google Scholar 

  28. Srivastava, M., Srivastava, S., & Rawat, A. K. S. (2010). Chemical standardization of Cassia angustifolia Vahl seed. Pharmacognosy Journal, 2, 554–560.

    Article  Google Scholar 

  29. Khorana, M. L., & Sanghavi, M. M. (1964). Two new glucosides from Cassia angustifolia pods. Journal of Pharmaceutical Sciences, 53, 110–112.

    Article  Google Scholar 

  30. Chaubey, M., & Kapoor, V. P. (2001). Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydrate Research, 332, 439–444.

    Article  Google Scholar 

  31. Al-Owaisi, M., Al-Hadiwi, N., & Khan, S. A. (2014). GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) Fiori leaves. Asian Pacific Journal of Tropical Biomedicine, 4, 964–970.

    Article  Google Scholar 

  32. Bhat, R. S., & Al-Daihan, S. (2014). Phytochemical constituents and antibacterial activity of some green leafy vegetables. Asian Pacific Journal of Tropical Biomedicine, I, 189–193.

    Article  Google Scholar 

  33. Sithara, N. V., Komathi, S., Rajalakshmi, G., Queen, J., & Bharathi, D. (2016). Phytochemical analysis of Andrographis Paniculata using different solvents. European Journal of Biotechnology and Bioscience, 4, 28–30.

    Google Scholar 

  34. Gautam, M. K., Gangwar, M., Nath, G., Rao, C. V., & Goel, R. K. (2012). In–vitro antibacterial activity on human pathogens and total phenolic, flavonoid contents of Murraya paniculata Linn. Leaves. Asian Pacific Journal of Tropical Biomedicine, 2, S1660–S1663.

    Article  Google Scholar 

  35. Chigayo, K., Mojapelo, P. E. L., Mnyakeni-Moleele, S., & Misihairabgwi, J. M. (2016). Phytochemical and antioxidant properties of different solvent extracts of Kirkia wilmsii tubers. Asian Pacific Journal of Tropical Biomedicine, 6, 1037–1043.

    Article  Google Scholar 

  36. Krishnaraj, C., Jagan, E. G., Ramachandran, R., Abirami, S. M., Mohan, N., & Kalaichelvan, P. T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochemistry, 47, 651–658.

    Article  Google Scholar 

  37. Govindappa, M., Channabasava, R., Kumar, K. S., & Pushpalatha, K. C. (2013). Antioxidant Activity and Phytochemical Screening of Crude Endophytes Extracts of Tabebuia argentea Bur. & K. Sch. American Journal of Plant Sciences, 4, 1641.

    Article  Google Scholar 

  38. Yadav, M., Yadav, A., & Yadav, J. P. (2014). In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana lam. Asian Pacific Journal of Tropical Medicine, 7, S256–S261.

    Article  Google Scholar 

  39. Nayak, D., Minz, A. P., Ashe, S., Rauta, P. R., Kumari, M., Chopra, P., & Nayak, B. (2016). Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines. Journal of Colloid and Interface Science, 470, 142–152.

    Article  Google Scholar 

  40. Bharathi, D., Josebin, M. D., Vasantharaj, S., & Bhuvaneshwari, V. (2018). Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. Journal of Nanostructure in Chemistry, 8, 83–92.

    Article  Google Scholar 

  41. Arunachalam, R., Dhanasingh, S., Kalimuthu, B., Uthirappan, M., Rose, C., & Mandal, A. B. (2012). Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids and Surfaces B: Biointerfaces, 94, 226–230.

    Article  Google Scholar 

  42. Azeez, L., Lateef, A., & Adebisi, S. A. (2017). Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Applied Nanoscience, 7, 59–66.

    Article  Google Scholar 

  43. Kumar, V. A., Ammani, K., Jobina, R., Subhaswaraj, P., & Siddhardha, B. (2017). Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. Journal of Photochemistry and Photobiology B: Biology, 171, 1–8.

    Article  Google Scholar 

  44. Bharathi, D., Ramalakshmi, S., Kalaichelvan, P. T., & Akilakalaichelvan, K. (2015). Biological synthesis of silver nanoparticles by using leaf extract of Justicia adhatoda. Der Pharmacia Letter, 7, 391–395.

    Google Scholar 

  45. Oluwaniyi, O. O., Adegoke, H. I., Adesuji, E. T., Alabi, A. B., Bodede, S. O., Labulo, A. H., & Oseghale, C. O. (2016). Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities. Applied Nanoscience, 6, 903–912.

    Article  Google Scholar 

  46. Martinez-Castanon, G. A., Nino-Martinez, N., Martinez-Gutierrez, F., Martinez-Mendoza, J. R., & Ruiz, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10, 1343–1348.

    Article  Google Scholar 

  47. Das, V. L., Thomas, R., Varghese, R. T., Soniya, E. V., Mathew, J., & Radhakrishnan, E. K. (2014). Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech, 4, 121–126.

    Article  Google Scholar 

  48. Gaddam, S. A., Kotakadi, V. S., Gopal, D. S., Rao, Y. S., & Reddy, A. V. (2014). Efficient and robust biofabrication of silver nanoparticles by cassia alata leaf extract and their antimicrobial activity. Journal of Nanostructure in Chemistry, 4, 82. https://doi.org/10.1007/s40097-014-0082-5.

    Article  Google Scholar 

  49. Bhakya, S., Muthukrishnan, S., Sukumaran, M., & Muthukumar, M. (2016). Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Applied Nanoscience, 6, 755–766.

    Article  Google Scholar 

  50. Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9, 217–227.

    Article  Google Scholar 

  51. Johnson, P., Krishnan, V., Loganathan, C., Govindhan, K., Raji, V., Sakayanathan, P., & Palvannan, T. (2017). Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: An effective antioxidant scavenger and α-amylase inhibitor. Artificial cells, Nanomedicine, and Biotechnology, 46, 1488–1494.

    Article  Google Scholar 

  52. Bharathi, D., Vasantharaj, S., & Bhuvaneshwari, V. (2018). Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm and photo catalytic activity. Materials Research Express, 5, 055404.

    Article  Google Scholar 

  53. Moteriya, P., Padalia, H., & Chanda, S. (2017). Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghii leaf extract. Journal of Genetic Engineering and Biotechnology, 15, 505–513.

    Article  Google Scholar 

  54. Prabu, K., Rajasekaran, A., Bharathi, D., & Ramalakshmi, S. (2018). Anti-oxidant activity, phytochemical screening and HPLC profile of rare endemic Cordia diffusa. Journal of King Saud University-Science. https://doi.org/10.1016/j.jksus.2018.04.025.

  55. He, Y., Wei, F., Ma, Z., Zhang, H., Yang, Q., Yao, B., & Zhang, Q. (2017). Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Advances, 7, 39842–39851.

    Article  Google Scholar 

  56. Netala, V. R., Bukke, S., Domdi, L., Soneya, S. G., Reddy, S., Bethu, M. S., & Tartte, V. (2018). Biogenesis of silver nanoparticles using leaf extract of Indigofera hirsuta L. and their potential biomedical applications (3-in-1 system). Artificial cells, Nanomedicine and Biotechnology, 1–11. https://doi.org/10.1080/21691401.2018.1446967.

  57. Khan, S. U., Saleh, T. A., Wahab, A., Khan, M. H. U., Khan, D., Khan, W. U., & Fahad, S. (2018). Nanosilver: New ageless and versatile biomedical therapeutic scaffold. International Journal of Nanomedicine, 13, 733.

    Article  Google Scholar 

  58. Khan, S. U., Anjum, S. I., Ansari, M. J., Khan, M. H. U., Kamal, S., Rahman, K., & Khan, D. (2018). Antimicrobial potentials of medicinal plant’s extract and their derived silver nanoparticles: A focus on honey bee pathogen. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2018.02.010.

  59. Remya, R. R., Rajasree, S. R., Aranganathan, L., & Suman, T. Y. (2015). An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnology Reports, 8, 110–115.

    Article  Google Scholar 

  60. Lalitha, P. (2015). Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Progress in Biomaterials, 4, 113–121.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Department of Science and Technology (DST-FIST), and College management for providing laboratory facilities and also we acknowledge the Dept. of Nanoscience and Technology, Karunya University, Coimbatore for extending their material characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devaraj Bharathi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharathi, D., Bhuvaneshwari, V. Evaluation of the Cytotoxic and Antioxidant Activity of Phyto-synthesized Silver Nanoparticles Using Cassia angustifolia Flowers. BioNanoSci. 9, 155–163 (2019). https://doi.org/10.1007/s12668-018-0577-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0577-5

Keywords

Navigation