Skip to main content

Advertisement

Log in

Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silver ions can be reduced by 24 kHz ultrasonic waves in ion-exchanged Ag+–Y zeolite. In this research, silver ions were introduced into the nano-porous (1.2 nm) zeolite lattice by ion-exchange route. After the reduction process, silver nanoparticles were placed in the cavities, with a size of about 1 nm and also on the external surfaces of the zeolite, with sizes about less than 10 nm. Fast and simple lab-scale reduction of silver ions in the zeolite is important for researchers who work on catalytic properties of metallic silver–zeolite. Several reduction methods have been reported but reduction by ultrasonic waves is a new, simple, and size-controllable method with a high practical value which does not need any complicated facilities. In a sonochemical process, a huge density of energy is provided by the collapse of bubbles which formed by ultrasonic waves. The released energy causes the formation of reducing radicals that consequently reduce the silver ions. It is concluded that the higher silver content may result in the formation of larger silver crystals on the external surface of zeolite crystals. Also, the addition of 1-propanol and 2-propanol to the aqueous reaction medium does not cause better reduction. In addition, increasing the irradiation time and ultrasonic power does not affect the silver crystal growth significantly but the extent of silver ion reduction increases when the power of ultrasonic waves increases. All samples were irradiated under the same ultrasonic conditions. The samples were analyzed by XRD, EDS, SEM, and TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen W, Zhang J, Cai W (2003) Scripta Mater 48:1061

    Article  CAS  Google Scholar 

  2. Dai WL, Cao Y, Ren LP, Yang XL, Xu JH, Li HX, He HY, Fan KN (2004) J Catal 228:80

    Article  CAS  Google Scholar 

  3. Cowan MM, Abshire KZ, Houk SL, Evans SM (2003) J Ind Microbiol Biotechnol 30:102

    CAS  PubMed  Google Scholar 

  4. Evanoff DD Jr, Chumanov G (2005) Chem Phys Chem 6:1221

    CAS  PubMed  Google Scholar 

  5. Kotlyar A, Perkas N, Amirian G, Meyer M, Zimmermann W, Gedanken A (2007) J Appl Sci 104:2868

    Article  CAS  Google Scholar 

  6. Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Nanotechnology 19:245705

    Article  ADS  Google Scholar 

  7. Perkas N, Shuster M, Amirian G, Koltypin Y, Gedanken A (2008) J Polym Sci A 46:1719

    Article  CAS  Google Scholar 

  8. Guczi L (2005) Catal Today 101:53

    Article  CAS  Google Scholar 

  9. Kumar N, Konova PM, Naydenov A, Heikilla T, Salmi T, Murzin DY (2004) Catal Lett 98(1):57

    Article  CAS  Google Scholar 

  10. Ju WS, Matsuka M, Iino K, Yamashita H, Anpo M (2004) J Phys Chem B 108:2128

    Article  CAS  Google Scholar 

  11. Jacobs PA, Uytterhoeven JB (1979) J Chem Soc Faraday Trans 75:56

    Article  CAS  Google Scholar 

  12. Jacobs PA, Uytterhoeven JB (1977) J Chem Soc Faraday Trans 73:1755

    CAS  Google Scholar 

  13. Baba T (2005) Catal Surv Asia 9(3):147

    Article  CAS  Google Scholar 

  14. Sebastian J, Jasra RV (2005) Ind Eng Chem Res 44:8014

    Article  CAS  Google Scholar 

  15. Tsutsumi K, Takahashi H (1972) Bull Chem Soc Jpn 45:2332

    Article  CAS  Google Scholar 

  16. Calzaferri G, Suter W, Waldeck B (1990) J Chem Soc Chem Commun 485

  17. Liu X, Lampert JK, Arendarskiia DA, Farrauto RJ (2001) Appl Catal B 35(2):125

    Article  CAS  Google Scholar 

  18. Calmon C, Grundner WT (1968) US Patent 3382039

  19. Satokawa S, Kobayashi Y, Fujiki H (2005) Appl Catal B 56(1–2):51

    Article  CAS  Google Scholar 

  20. Yang RT, Maldonado AJH, Yang FH (2003) Science 301:79

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Rosenbach N Jr, Mota CJA (2005) J Braz Chem Soc 16(4):691

    CAS  Google Scholar 

  22. Wagner GW, Bartram PW (1999) Langmuir 15:8113

    Article  CAS  Google Scholar 

  23. Shin LK, Kamarudin KSN, Yuan CY, Hamdan H, Mat H (2004) Proceeding of the 18th symposium of malaysian chemical engineering. Malaysia 1:86

    Google Scholar 

  24. Chen JH, Lin JN, Kang YM, Yu WY, Kuo CN, Wan BZ (2005) Appl Catal A 291:162

    Article  CAS  Google Scholar 

  25. Tanabe S, Matsumoto H, Mizushima T, Okitsu K, Maeda Y (1996) Chem Lett 327

  26. Okitsu K, Yue A, Tanabe S, Matsumoto H (2002) Bull Chem Soc Jpn 75:449

    Article  CAS  Google Scholar 

  27. Henglein A (1998) Chem Mater 10:444

    Article  CAS  Google Scholar 

  28. Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A (2000) Langmuir 16:6396

    Article  CAS  Google Scholar 

  29. Zhang Y, Chen F, Zhuang J, Tang Y, Wang D, Wang Y, Dong A, Ren N (2002) J Chem Soc Chem Commun 23:2814

    Google Scholar 

  30. Gedanken A (2004) Ultrason Sonochem 11:47

    Article  CAS  PubMed  Google Scholar 

  31. Askari S, Halladj R, Nasernejad B (2009) Mater Sci Pol 27(2):397

    CAS  Google Scholar 

  32. Dion JL (2009) Ultrason Sonochem 16:212

    Article  CAS  PubMed  Google Scholar 

  33. Asakura Y, Yasuda K, Kato D, Kojima Y, Koda S (2008) Chem Eng J 139:339

    Article  CAS  Google Scholar 

  34. Abramov OV, Gedanken A, Koltypin Y, Perkas N, Perelshtein I, Joyce E, Mason TJ (2009) Surf Coat Technol 204:718

    Article  CAS  Google Scholar 

  35. Okitsu K, Mizokoshi Y, Bandow H, Maeda Y, Yamamoto T, Nagata Y (1996) Ultrason Sonochem 3(3):S249

    Article  CAS  Google Scholar 

  36. Wang XK, Shao L, Guo WL, Wang JG, Zhu YP, Wang C (2009) Ultrason Sonochem 16:747

    Article  CAS  PubMed  Google Scholar 

  37. Fujimoto T, Terauchi SY, Umehara H, Kojima I, Henderson W (2001) Chem Mater 13:1057

    Article  CAS  Google Scholar 

  38. Nanzai B, Okitsu K, Takenaka N, Bandow H, Tajima N, Maeda Y (2009) Ultrason Sonochem 16:163

    Article  CAS  PubMed  Google Scholar 

  39. Okitso K, Ashokumar M, Grieser F (2005) J Phys Chem B 109(4):20673

    Article  Google Scholar 

  40. Toshihida B, Noboru A, Mamoru N, Yoshio O (1993) J Chem Soc Faraday Trans 89(3):595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouein Halladj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talebi, J., Halladj, R. & Askari, S. Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate. J Mater Sci 45, 3318–3324 (2010). https://doi.org/10.1007/s10853-010-4349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4349-z

Keywords

Navigation