Skip to main content

Advertisement

Log in

A method to predict solar photovoltaic soiling using artificial neural networks and multiple linear regression models

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The adverse effects on performance and reliability of soiling on solar photovoltaics are the major areas of concern in today’s era. Environmental and meteorological solar photovoltaic soiling parameters were investigated for three 100Wp PV collectors installed at Harare Institute of Technology, Harare, Zimbabwe. The Boruta algorithm implemented in the random forest technique was used to select the most influential parameters in a given set of parameters used in soiling predictive modelling. Five most important variables which are PM10, relative humidity, precipitation, wind speed and wind direction were identified and used in modelling. Two soiling predictive models were developed using Artificial Neural Networks together with Multiple Linear Regression. The five selected most influential soiling variables were used in the two predictive models and the performance of the models was adequate with \( R_{adj}^{2} \) of 97.91% and 79.69%, respectively, for Artificial Neural Networks and Multiple Linear Regression. Moreover, the Residual Mean Square Error Values for the two models were 1.16% and 4.9% with Mean Absolute Percentage Errors of 6.3% and 10.6%, respectively, for Artificial Neural Networks and Multiple Linear Regression. The measured data indicated a mean daily loss in efficiency \( \left( {\overline{\eta }_{l} } \right) \) of 0.083% and a standard deviation of \( \left( {\sigma_{l} } \right) \) of 0.00973%. The investigation revealed that soiling prediction is of paramount importance as it give the basis for the determination of mitigation activities. If the energy loss due to soiling is known in advance, cleaning procedures will be planned ahead of time. The energy supply by such a solar photovoltaic system will be known in advance leading to the determination of an alternative energy source to cater for the deficit created by the anticipated energy loss due to soiling and the subsequent cleaning procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jiang, Y.: Correlation for diffuse radiation from global solar radiation and sunshine data at Beijing, China. J. Energy Eng. 135, 107–111 (2009). https://doi.org/10.1061/(ASCE)0733-9402(2009)135:4(107)

    Article  Google Scholar 

  2. Ren, Y., Qi, H., Shi, J., Chen, Q., Wang, Y., Ruan, L.: Thermal performance characteristics of porous media receiver exposed to concentrated solar radiation. J. Energy Eng. 143, 04017013 (2017). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000448

    Article  Google Scholar 

  3. Athira, V., Geetha, P., Vinayakumar, R., Soman, K.P.: DeepAirNet: applying recurrent networks for air quality prediction. Procedia Comput. Sci. 132, 1394–1403 (2018). https://doi.org/10.1016/j.procs.2018.05.068

    Article  Google Scholar 

  4. Isaifan, R.J., Johnson, D., Ackermann, L., Figgis, B., Ayoub, M.: Evaluation of the adhesion forces between dust particles and photovoltaic module surfaces. Sol. Energy Mater. Sol. Cells 191, 413–421 (2019). https://doi.org/10.1016/j.solmat.2018.11.031

    Article  Google Scholar 

  5. Conceição, R., Silva, H.G., Collares-Pereira, M.: CSP mirror soiling characterization and modeling. Sol. Energy Mater. Sol. Cells 185, 233–239 (2018). https://doi.org/10.1016/j.solmat.2018.05.035

    Article  Google Scholar 

  6. Khan, M.Z.H., Al-Mamun, M.R., Halder, P.K., Aziz, M.A.: Performance improvement of modified dye-sensitized solar cells. Renew. Sustain. Energy Rev. 71, 1–16 (2016). https://doi.org/10.1016/j.rser.2016.12.087

    Article  Google Scholar 

  7. Sanchez, D., Trujillo, P., Martinez, M., Ferrer, J.P., Rubio, F.: CPV performance versus soiling effects: cleaning policies. In: Presented at the 8th International Conference On Concentrating Photovoltaic Systems: CPV-8, Toledo, Spain (2012)

  8. Bakirci, K.: Correlations for estimation of solar radiation on horizontal surfaces. J. Energy Eng. 134, 130–134 (2008). https://doi.org/10.1061/(ASCE)0733-9402(2008)134:4(130)

    Article  Google Scholar 

  9. Micheli, L., Muller, M.: An investigation of the key parameters for predicting PV soiling losses. Prog. Photovolt. Res. Appl. 25, 291–307 (2017). https://doi.org/10.1002/pip.2860

    Article  Google Scholar 

  10. Sayyah, A., Horenstein, M.N., Mazumder, M.K.: Energy yield loss caused by dust deposition on photovoltaic panels. Sol. Energy 107, 576–604 (2014). https://doi.org/10.1016/j.solener.2014.05.030

    Article  Google Scholar 

  11. Picotti, G., Borghesani, P., Cholette, M.E., Manzolini, G.: Soiling of solar collectors—modelling approaches for airborne dust and its interactions with surfaces. Renew. Sustain. Energy Rev. 81, 2343–2357 (2018). https://doi.org/10.1016/j.rser.2017.06.043

    Article  Google Scholar 

  12. El-Shobokshy, M.S., Hussein, F.M.: Effect of dust with different physical properties on the performance of photovoltaic cells. Sol. Energy 51, 505–511 (1993). https://doi.org/10.1016/0038-092X(93)90135-B

    Article  Google Scholar 

  13. Mastekbayeva, G.A., Kumar, S.: Effect of dust on the transmittance of low density polyethylene glazing in a tropical climate. Solar Energy 68, 135–141 (2000)

    Article  Google Scholar 

  14. Kaldellis, J.K., Kapsali, M.: Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements. Energy. 36, 5154–5161 (2011)

    Article  Google Scholar 

  15. Javed, W., Guo, B., Figgis, B.: Modeling of photovoltaic soiling loss as a function of environmental variables. Sol. Energy 157, 397–407 (2017). https://doi.org/10.1016/j.solener.2017.08.046

    Article  Google Scholar 

  16. You, S., Lim, Y.J., Dai, Y., Wang, C.H.: On the temporal modelling of solar photovoltaic soiling: energy and economic impacts in seven cities. Appl. Energy 228, 1136–1146 (2018). https://doi.org/10.1016/j.apenergy.2018.07.020

    Article  Google Scholar 

  17. Pulipaka, S., Mani, F., Kumar, R.: Modeling of soiled PV module with neural networks and regression using particle size composition. Sol. Energy 123, 116–126 (2016). https://doi.org/10.1016/j.solener.2015.11.012

    Article  Google Scholar 

  18. Pavan, A.M., Mellit, A., De Pieri, D., Kalogirou, S.A.: A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants. Appl. Energy 108, 392–401 (2013). https://doi.org/10.1016/j.apenergy.2013.03.023

    Article  Google Scholar 

  19. Ketjoy, N., Konyu, M.: Study of dust effect on photovoltaic module for photovoltaic power plant. Energy Procedia. 52, 431–437 (2014). https://doi.org/10.1016/j.egypro.2014.07.095

    Article  Google Scholar 

  20. Pulipaka, S., Kumar, R.: Analysis of soil distortion factor for photovoltaic modules using particle size composition. Sol. Energy 161, 90–99 (2018). https://doi.org/10.1016/j.solener.2017.11.041

    Article  Google Scholar 

  21. Mani, F., Pulipaka, S., Kumar, R.: Modeling of soiled photovoltaic modules with neural networks using particle size composition of soil. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). pp. 1–4 (2015)

  22. Laarabi, B., May Tzuc, O., Dahlioui, D., Bassam, A., Flota-Bañuelos, M., Barhdadi, A.: Artificial neural network modeling and sensitivity analysis for soiling effects on photovoltaic panels in Morocco. Superlattices Microstruct. (2017). https://doi.org/10.1016/j.spmi.2017.12.037

    Article  Google Scholar 

  23. Guo, B., Javed, W., Figgis, B.W., Mirza, T.: Effect of dust and weather conditions on photovoltaic performance in Doha, Qatar. In: 2015 First Workshop on Smart Grid and Renewable Energy (SGRE). pp. 1–6 (2015)

  24. Guo, B., Javed, W., Khan, S., Figgis, B., Mirza, T.: Models for Prediction of Soiling-Caused Photovoltaic Power Output Degradation Based on Environmental Variables in Doha, Qatar. In: ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, Charlotte, North Carolina, USA (2016)

  25. Sun, H.: Assessing the potential of random forest method for estimating solar radiation using air pollution index. Energy Convers. Manag. 119, 121–129 (2016)

    Article  Google Scholar 

  26. Abdelali, Z., Mustapha, H., Abdelwahed, N.: Investigating the use of random forest in software effort estimation. Proced. Comput. Sci. 148, 343–352 (2019). https://doi.org/10.1016/j.procs.2019.01.042

    Article  Google Scholar 

  27. Wang, Z., Wang, Y., Zeng, R., Srinivasan, R.S., Ahrentzen, S.: Random Forest based hourly building energy prediction. Energy Build. 171, 11–25 (2018). https://doi.org/10.1016/j.enbuild.2018.04.008

    Article  Google Scholar 

  28. Genuer, R., Poggi, J.-M., Tuleau-Malot, C., Villa-Vialaneix, N.: Random forests for big data. Big Data Res. 9, 28–46 (2017). https://doi.org/10.1016/j.bdr.2017.07.003

    Article  Google Scholar 

  29. Lovatti, B.P.O., Nascimento, M.H.C., Neto, Á.C., Castro, E.V.R., Filgueiras, P.R.: Use of random forest in the identification of important variables. Microchem. J. 145, 1129–1134 (2019). https://doi.org/10.1016/j.microc.2018.12.028

    Article  Google Scholar 

  30. Kursa, M.B., Rudnicki, W.R.: Feature selection with the Boruta package. J. Stat. Softw. (2010). https://doi.org/10.18637/jss.v036.i11

    Article  Google Scholar 

  31. Ghazi, S., Sayigh, A., Ip, K.: Dust effect on flat surfaces—a review paper. Renew. Sustain. Energy Rev. (2014). https://doi.org/10.1016/j.rser.2014.02.016

    Article  Google Scholar 

  32. Zhu, D., Cai, C., Yang, T., Zhou, X.: A machine learning approach for air quality prediction: model regularization and optimization. Big Data Cogn. Comput. 2, 5 (2018). https://doi.org/10.3390/bdcc2010005

    Article  Google Scholar 

  33. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  34. Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta—a system for feature selection. Fundam. Inform. 101, 217–285 (2010)

    Article  MathSciNet  Google Scholar 

  35. Zitouni, H., Merrouni, A.A., Regragui, M., Bouaichi, A., Hajjaj, C., Ghennioui, A., Ikken, B.: Experimental investigation of the soiling effect on the performance of monocrystalline photovoltaic systems. Energy Proced. 157, 1011–1021 (2019). https://doi.org/10.1016/j.egypro.2018.11.268

    Article  Google Scholar 

  36. Figgis, B., Ennaoui, A., Guo, B., Javed, W., Chen, E.: Outdoor soiling microscope for measuring particle deposition and resuspension. Sol. Energy 137, 158–164 (2016). https://doi.org/10.1016/j.solener.2016.08.015

    Article  Google Scholar 

  37. Said, S.A.M., Hassan, G., Walwil, H.M., Al-Aqeeli, N.: The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renew. Sustain. Energy Rev. 82, 743–760 (2018). https://doi.org/10.1016/j.rser.2017.09.042

    Article  Google Scholar 

  38. Menoufi, K.: Dust accumulation on the surface of photovoltaic panels: introducing the photovoltaic soiling index (PVSI). Sustainability. 9, 963 (2017). https://doi.org/10.3390/su9060963

    Article  Google Scholar 

  39. Mani, M., Pillai, R.: Impact of dust on solar photovoltaic (PV) performance: research status, challenges and recommendations. Renew. Sustain. Energy Rev. 14, 3124–3131 (2010). https://doi.org/10.1016/j.rser.2010.07.065

    Article  Google Scholar 

  40. Appels, R., Lefevre, B., Herteleer, B., Goverde, H., Beerten, A., Paesen, R., De Medts, K., Driesen, J., Poortmans, J.: Effect of soiling on photovoltaic modules. Sol. Energy 96, 283–291 (2013). https://doi.org/10.1016/j.solener.2013.07.017

    Article  Google Scholar 

  41. Shaju, A., Chacko, R.: Soiling of photovoltaic modules—review. In: IOP Conference Series: Materials Science and Engineering, Vol. 396, p 012050. https://doi.org/10.1088/1757-899x/396/1/012050 (2018)

  42. Kaldellis, J.K., Kokala, A.: Quantifying the decrease of the photovoltaic panels’ energy yield due to phenomena of natural air pollution disposal. Energy. 35, 4862–4869 (2010). https://doi.org/10.1016/j.energy.2010.09.002

    Article  Google Scholar 

  43. Micheli, L., Deceglie, M.G., Muller, M.: Predicting photovoltaic soiling losses using environmental parameters: an update. Prog. Photovolt. Res. Appl. (2018). https://doi.org/10.1002/pip.3079

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kudzanayi Chiteka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiteka, K., Arora, R. & Sridhara, S.N. A method to predict solar photovoltaic soiling using artificial neural networks and multiple linear regression models. Energy Syst 11, 981–1002 (2020). https://doi.org/10.1007/s12667-019-00348-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-019-00348-w

Keywords

Navigation