Skip to main content
Log in

Microstructure and Phase Analysis of Multilayer Ni–Cr–Mo Clad for Corrosion Protection

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Ni–Cr–Mo clads are commonly used on carbon steels in the oil and gas industry due to the high resistant corrosion. In this study, a three-layer Ni–Cr–Mo clad was deposited using the GMAW process. The welding current of 200 A, the welding speed of 35 cm/min, and the electrode extension of 20 mm, as well as the torch angle of 25°, are utilized to obtain a low dilution. The results showed that Fe content in the second and third layers of the clad was below 2 wt%. The segregation of Nb and Mo to interdendritic regions contributed to the formation of secondary phases, such as Laves and MC carbide precipitates. The results of chemical analysis across some dendrites and interdendritic regions confirmed that the contents and distribution of secondary phases were insignificant. Also, the transition region where the chemical composition significantly changes to reach the composition of the first layer of the clad is apparent. The microstructure of this region changes from the planar to cellular. The corrosion behavior of the clad was investigated, and it was found that corrosion resistance is not affected when the Fe content is restricted to below 2%. A passive layer consisting of Mo, Nb, Ni and Cr with O is formed on the corroded surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Guo L, Zheng H, Liu S, Li Y, Feng C, and Xu X, Int J Electrochem Sci 11 (2016) 5507.

    Article  CAS  Google Scholar 

  2. Cuevas-Arteagaa C, Verhelstb D, and Alfantazia A, ECS Trans 28 (2010) 61.

    Article  Google Scholar 

  3. Xing X, Xinjie D, and Baosen W, J Alloys Compd 593 (2014) 110.

    Article  CAS  Google Scholar 

  4. Lippold J C, Kiser S D, and DuPont J N, Welding Metallurgy and Weldability of Nickel-Base Alloys, 1st edn, John Wiley & Sons Inc, New York (2011).

    Google Scholar 

  5. Petrzak P, Kowalski K, and Blicharski M, Acta Phys Pol A 130 (2016) 1041.

    Article  CAS  Google Scholar 

  6. Razmus-Gornikowska M, and Blicharski M, Arch Metall Mater 60 (2015) 2599.

    Article  Google Scholar 

  7. Silva C C, Miranda H C, Motta M F, Farias J P, Afonso C R M, and Ramirez A J, J Mater Res Technol 2 (2013) 228.

    Article  CAS  Google Scholar 

  8. Elango P, Balaguru S, Indian J Sci Technol 8 (2015) 1.

    Article  Google Scholar 

  9. Ban S, Shin Y T, Lee S R, and Lee H, Int J Electrochem Sci 11 (2016) 7764.

    Article  CAS  Google Scholar 

  10. Jung E, and Lee H, Int J Electrochem Sci 11 (2016) 7125.

    Article  CAS  Google Scholar 

  11. Kalivodova J, Baxter D, Schutze M, and Rohr V, Mater Corros 59 (2008) 367.

    Article  CAS  Google Scholar 

  12. Banovic S W, Dupont I N, and Marder A, Metall Mater Trans B 32 (2001) 1171.

    Article  Google Scholar 

  13. Shihab S K, Mohamed R M, and Mubarek E M, Mater Today Proc 16 (2019) 816.

    Article  CAS  Google Scholar 

  14. Palani P K, and Murugan N, Int J Adv Manuf Technol 30 (2006) 669.

    Article  Google Scholar 

  15. ASTM E407-07, Standard Practice for Microetching Metals and Alloys, ASTM International, Pennsylvania (2015).

  16. Razmus-Gornikowska M, Cieniek L, Blicharski M, and Kusinski J, Arch Metall Mater 59 (2014) 1081.

    Article  Google Scholar 

  17. Razmus-Gornikowska M, and Blicharski M, Arch Metall Mater 62 (2017) 787.

    Article  Google Scholar 

  18. Araujo A A D, Bastian F L, and Castrodeza E M, Fatigue Fract Eng Mater Struct 39 (2016) 1477.

    Article  CAS  Google Scholar 

  19. Alexandrov B T, Lippold J C, Sowards J W, Hope A T, and Saltzmann D R, Weld World 57 (2013) 39.

    Article  CAS  Google Scholar 

  20. Sandes S S, Alvaraes C P, Mendes M C, Araujo L S D, Souza L F G D, and Jorge J C F, Weld Int 32 (2017) 179.

    Article  Google Scholar 

  21. Zahran E M, and Alfantazi A M, Metall Mater Trans A 44 (2013) 4671.

    Article  Google Scholar 

  22. Dupont J N, Banovic S W, and Marder A R, Weld J 82 (2003) 125.

    Google Scholar 

  23. Petrzak P, Blicharski M, Dymek S, and Solecka M, Solid State Phenom 231 (2015) 113.

    Article  Google Scholar 

  24. Kim J S, and Lee H, Metall Mater Trans A 47 (2016) 6109.

    Article  CAS  Google Scholar 

  25. Radhakrishna C H, and Rao K P, J Mater Sci 32 (1997) 1977.

    Article  CAS  Google Scholar 

  26. International Standard NACE MR0175/ISO 15156, Petroleum and Natural Gas Industries Materials for Use in H2S-Containing Environments in Oil and Gas Production, NACE International, Houston (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farzadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, M., Moshkbar Bakhshayesh, M. & Farzadi, A. Microstructure and Phase Analysis of Multilayer Ni–Cr–Mo Clad for Corrosion Protection. Trans Indian Inst Met 74, 1663–1672 (2021). https://doi.org/10.1007/s12666-021-02256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02256-z

Keywords

Navigation