Skip to main content
Log in

Optimization of Mineralogy and Microstructure of Solidified Basic Oxygen Furnace Slag Through SiO2 Addition or Atmosphere Control During Hot-Stage Slag Treatment

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Valorization of basic oxygen furnace (BOF) slag is of significant importance for mitigation of the steel production’s environmental impact. The present work aims to investigate the influence of SiO2 addition and oxygen partial pressure on the mineralogical modification of a typical industrial BOF slag. The slag basicity (mass ratio of CaO/SiO2) was varied from 1.8 to 4.4 by mixing specific amounts of SiO2 with the master BOF slag. The original and modified slags were remelted and solidified under argon or air atmosphere followed by slow cooling. The experimental observations were then compared with the results of thermodynamic modeling to achieve a thorough understanding. With decreasing the basicity, free lime was eliminated, as it forms dicalcium silicate (Ca2SiO4). With increasing oxygen partial pressure, wustite was oxidized to hematite, which combined with free lime to form calcium aluminoferrite (C2AF). The effects of SiO2 addition and oxygen partial pressure were finally evaluated with respect to the energy consumption for the BOF slag valorization. The modified slag is suitable as a precursor for construction applications as binders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. D.M. Proctor, K.A. Fehling, E.C. Shay, J.L. Wittenborn, J.J. Green, C. Avent, R.D. Bigham, M. Connolly, B. Lee, T.O. Shepker, and M.A. Zak: Environ. Sci. Technol., 2000, vol. 34, pp. 1576–82.

    Article  Google Scholar 

  2. www.euroslag.com, accessed on Feb. 25, 2017.

  3. M. Morone, G. Costa, A. Polettini, R. Pomi, and R. Baciocchi: Miner. Eng., 2014, vol. 59, pp. 82–90.

    Article  Google Scholar 

  4. L. Andreas, S. Diener, and A. Lagerkvist: Waste Manag., 2014, vol. 34, pp. 692–701.

    Article  Google Scholar 

  5. I. Herrmann, L. Andreas, S. Diener, and L. Lind: Waste Manag. Res., 2010, vol. 28, pp. 1114–21.

    Article  Google Scholar 

  6. A.S. Reddy, R.K. Pradhan, and S. Chandra: Int. J. Miner. Process., 2006, vol. 79, pp. 98–105.

    Article  Google Scholar 

  7. L. Kriskova, Y. Pontikes, L. Pandelaers, Ö. Cizer, P.T. Jones, K. Van Balen, and B. Blanpain: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1173–84.

    Article  Google Scholar 

  8. J.N. Murphy, T.R. Meadowcroft, and P.V. Barr: Can. Metall. Q., 1997, vol. 36, pp. 315–31.

    Article  Google Scholar 

  9. H. Motz and J. Geiseler: Waste Manag., 2001, vol. 21, pp. 285–93.

    Article  Google Scholar 

  10. G. Wang, Y.H. Wang, and Z.L. Gao: J. Hazard. Mater., 2010, vol. 184, pp. 555–60.

    Article  Google Scholar 

  11. R.M. Santos, D. Ling, A. Sarvaramini, M.X. Guo, J. Elsen, F. Larachi, G. Beaudoin, B. Blanpain, and T. Van Gerven: Chem. Eng. J., 2012, vol. 203, pp. 239–50.

    Article  Google Scholar 

  12. R.I. Iacobescu, A. Malfliet, L. Machiels, P.T. Jones, B. Blanpain, and Y. Pontikes: Waste Biomass Valoriz., 2014, vol. 5, pp. 343–53.

    Article  Google Scholar 

  13. S.A. Mikhail and A.M. Turcotte: Thermochim. Acta, 1995, vol. 263, pp. 87–94.

    Article  Google Scholar 

  14. J.B. Ferreira Neto, J.O.G. Faria, C. Fredericci, F. Chotoli, A.N.L. Silva, B.B. Ferraro, T.R. Ribeiro, A. Malynowskyj, V.A. Quarcioni, and A.A. Lotto: J. Sustain. Metall., 2016, vol. 2, pp. 13–27.

    Article  Google Scholar 

  15. B. Deo, J. Halder, B. Snoeijer, A. Overbosch, and R. Boom: Ironmak. Steelmak., 2005, vol. 32, pp. 54–60.

    Article  Google Scholar 

  16. M. Gautier, J. Poirier, F. Bodénan, G. Franceschini, and E. Véron: Int. J. Miner. Process., 2013, vol. 123, pp. 94–101.

    Article  Google Scholar 

  17. M. Salman, Ö. Cizer, Y. Pontikes, R.M. Santos, R. Snellings, L. Vandewalle, B. Blanpain, and K. Van Balen: Chem. Eng. J., 2014, vol. 246, pp. 39–52.

    Article  Google Scholar 

  18. J. Heulens, B. Blanpain, and N. Moelans: Chem. Geol., 2011, vol. 290, pp. 156–62.

    Article  Google Scholar 

  19. Y.Q. Sun, Z.T. Zhang, L.L. Liu, and X.D. Wang: Energies, 2014, vol. 7, pp. 1673–84.

    Article  Google Scholar 

  20. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen: Calphad Comput. Coupl. Phase Diagr. Thermochem., 2009, vol. 33, pp. 295–311.

    Article  Google Scholar 

  21. C.W. Bale, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen: Calphad, 2002, vol. 26, pp. 189–228.

    Article  Google Scholar 

  22. H.F.W. Taylor: Cement Chemistry, 2nd ed., Thomas Telford Publishing, London, 1997.

    Book  Google Scholar 

  23. C. Duée, C. Bourgel, E. Véron, M. Allix, F. Fayon, F. Bodénan, and J. Poirier: Cem. Concr. Res., 2015, vol. 73, pp. 207–14.

    Article  Google Scholar 

  24. R.W. Nurse, J.H. Welch, and W. Gutt: J. Chem. Soc., 1956, vol. 3, pp. 1077–83.

    Google Scholar 

  25. X.R. Wu, P. Wang, L.S. Li, Z.J. Wu, and R.H. Chen: Ironmak. Steelmak., 2011, vol. 38, pp. 185–88.

    Article  Google Scholar 

  26. S.N. Ghosh, P.B. Rao, A.K. Paul, and K. Raina: J. Mater. Sci., 1979, vol. 14, pp. 1554–66.

    Article  Google Scholar 

  27. H.M. Ludwig and W.S. Zhang: Cem. Concr. Res., 2015, vol. 78A, pp. 24–37.

    Article  Google Scholar 

  28. I. Nishinohara, N. Kase, H. Maruoka, S. Hirai, and H. Eba: ISIJ Int., 2015, vol. 55, pp. 616–22.

    Article  Google Scholar 

  29. D.Y. Wang, M.F. Jiang, C.J. Liu, Y. Min, Y.Y. Cui, J. Liu, and Y.C. Zhang: Steel Res. Int., 2012, vol. 83, pp. 189–96.

    Article  Google Scholar 

  30. Y. Satyoko, W.E. Lee, E. Parry, P. Richards, and I.G. Houldsworth: Ironmak. Steelmak., 2003, vol. 30, pp. 203–08.

    Article  Google Scholar 

  31. D. Moseley and F.P. Glasser: Cem. Concr. Res., 1981, vol. 11, pp. 559–65.

    Article  Google Scholar 

  32. D. Moseley and F.P. Glasser: J. Mater. Sci., 1982, vol. 17, pp. 2736–40.

    Article  Google Scholar 

  33. P.F. Lang and B.C. Smith: Dalt. Trans., 2010, vol. 39, pp. 7786–91.

    Article  Google Scholar 

  34. W.C. Allen and R.B. Snow: J. Am. Ceram. Soc., 1955, vol. 38, pp. 264–272.

    Article  Google Scholar 

  35. F. Abbattista, A. Burdese, and M. Maja: Rev. Int. Hautes Temp. Refract., 1975, vol. 12, pp. 337–42.

    Google Scholar 

  36. E. Schürmann and G. Kraume: Arch. Eisenhüttenwes., 1976, vol. 47, pp. 327–31.

    Article  Google Scholar 

  37. M. Allibert: Slag Atlas, Verlag Stahleisen GmbH, Dusseldorf, 1995.

    Google Scholar 

  38. D. Durinck, P.T. Jones, B. Blanpain, and P. Wollants: J. Am. Ceram. Soc., 2008, vol. 91, pp. 3342–48.

    Article  Google Scholar 

  39. C. Bodsworth and H.B. Bell: Physical Chemistry of Iron and Steel Manufacture, 2nd ed., Longmans, London, 1972.

    Google Scholar 

  40. J. Murphy, T. Meadwcroft, and P. Barr: Can. Metall. Q., 1997, vol. 6, pp. 315–31.

    Article  Google Scholar 

  41. S. Andersson and L. Dzhavadov: J. Phys. Condens. Matter, 1992, vol. 4, pp. 6209–16.

    Article  Google Scholar 

  42. D. Gaskell: An Introduction to Transport Phenomena in Materials Engineering, 2nd ed., Momentum Press, 2013.

    Google Scholar 

  43. L. Pandelaers, A.D. Alfonso, P.T. Jones, and B. Blanpain: ISIJ Int., 2013, vol. 53, pp. 1106–11.

    Article  Google Scholar 

  44. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, John Wiley & Sons, 2007.

    Google Scholar 

Download references

Acknowledgments

Financial support from the Agency for Innovation by Science and Technology of Belgium (IWT, Grant No. 140514) is appreciated. One of the authors (CL) acknowledges the support of the China Scholarship Council (CSC, Grant No. 201306080002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunwei Liu.

Additional information

Manuscript submitted July 18, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Huang, S., Blanpain, B. et al. Optimization of Mineralogy and Microstructure of Solidified Basic Oxygen Furnace Slag Through SiO2 Addition or Atmosphere Control During Hot-Stage Slag Treatment. Metall Mater Trans B 50, 210–218 (2019). https://doi.org/10.1007/s11663-018-1444-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1444-z

Keywords

Navigation