Skip to main content
Log in

Interface Microstructure Characteristics of Friction-Welded Joint of Titanium to Stainless Steel with Interlayer

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Dissimilar joining between stainless steel and titanium by friction welding enhances the metallurgical compatibility and properties of the interface. The severity of the formation of intermetallic compounds is inhibited up to some extent. However, the complete prevention of the Fe–Ti and Cr–Ti type of intermetallic compounds cannot occur. In this study, the interlayer technique has been applied to develop friction-welded joints between dissimilar materials. Tantalum is one of the candidate materials to act as an interlayer between titanium and stainless steel and can form ample metallurgical compatibility with both of the substrates. The interface between stainless steel and interlayer exhibited the presence of a mixed region. The diffusion of titanium atoms into the interlayer is revealed along with the interface of titanium to an interlayer. The electron probe microanalyzer characterized the diffusion of atoms at interfaces. The microhardness survey unveiled the increasing hardness over the stainless steel and interlayer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kundu S, Ghosh M, Laik A, Bhanumurthy K, Kale G B, and Chatterjee S, Mater Sci Eng A428 (2006) 18.

    Article  Google Scholar 

  2. Muralimohan C H, Muthupandi V, and Sivaprasad K, Procedia Mater Sci5 (2014) 1120.

    Article  CAS  Google Scholar 

  3. Cheepu M, Ashfaq M, and Muthupandi V, Trans Indian Inst Met70 (2017) 2591.

    Article  CAS  Google Scholar 

  4. Muralimohan C H, Muthupandi V, and Sivaprasad K, Inter J Mater Res105 (2014) 350.

    Article  CAS  Google Scholar 

  5. Cheepu M, Muthupandi V, and Che W S, Appl Mech Mater877 (2018) 157.

    Article  Google Scholar 

  6. Lee K H, Choi S W, Yoon T J, and Kang C Y, J Weld Join34 (2016) 75.

    Article  Google Scholar 

  7. Cheepu M, Muthupandi V, and Che W S, in The Minerals, Metals & Materials Series, TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series, Springer, Cham (2019), p 259.

  8. Cheepu M M, Muthupandi V, and Loganathan S, Mater Sci Forum710 (2012) 620.

    Article  CAS  Google Scholar 

  9. Cheepu M, and Che W S, Trans Indian Inst Met72 (2019) 1563.

    Article  CAS  Google Scholar 

  10. Kato H, Shibata M, and Yoshikawa K, Mater Sci Technol2 (1986) 405.

    Article  CAS  Google Scholar 

  11. Cheepu M, and Che W S, J Weld Join37 (2019) 46.

    Article  Google Scholar 

  12. Muralimohan C H, Haribabu S, Reddy Y H, Muthupandi V, and Sivaprasad K, Procedia Mater Sci5 (2014) 1107.

    Article  CAS  Google Scholar 

  13. Meshram S D, Mohandas T, and Reddy G M, J Mater Process Technol184 (2007) 330.

    Article  CAS  Google Scholar 

  14. Muralimohan C H, Haribabu S, Reddy Y H, Muthupandi V, and Sivaprasad K, J Adv Mech Eng Sci1 (2015) 57.

    Article  Google Scholar 

  15. Cheepu M, Venkateswarlu D, Rao P N, Muthupandi V, Sivaprasad K, and Che W S, Mater Sci Forum969 (2019) 211.

    Article  Google Scholar 

  16. Tra T H, and Okazaki M, Metall Mater Trans A48 (2017) 3962.

    Article  Google Scholar 

  17. Muralimohan C H, Ashfaq M, Ashiri R, Muthupandi V, and Sivaprasad K, Metall Mater Trans A47 (2016) 347.

    Article  CAS  Google Scholar 

  18. Noh M Z, Luay B H, and Zainal A A, J Mater Process Technol204 (2008) 279.

    Article  CAS  Google Scholar 

  19. Cheepu M, and Che W S, Trans Indian Inst Met72 (2019) 1597.

    Article  CAS  Google Scholar 

  20. Fukumoto S, Inoue T, Mizuno S, Okita K, Tomita T, and Yamamoto A, Sci Technol Weld Join15 (2010) 124.

    Article  CAS  Google Scholar 

  21. Muralimohan C H, and Muthupandi V, Adv Mater Res794 (2013) 351.

    Article  Google Scholar 

  22. Reddy G M and Ramana P V, J Mater Process Technol212 (2012) 66.

    Article  Google Scholar 

  23. Meshram SD and Reddy GM, Def Technol11 (2015) 292.

    Article  Google Scholar 

  24. He P, Feng J C, and Zhang B G, and Qian Y Y, Mater Charact48 (2002) 401.

    Article  CAS  Google Scholar 

  25. Das K. and Das S, J phase equilib diffusion26 (2005) 322.

    Article  CAS  Google Scholar 

  26. Kong Y S, Cheepu M, and Park Y W, Trans Indian Inst Met (2020). https://doi.org/10.1007/s12666-020-01900-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Susila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P. Susila: On-deputation to BIT campus, Anna University Trichy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheepu, M., Susila, P. Interface Microstructure Characteristics of Friction-Welded Joint of Titanium to Stainless Steel with Interlayer. Trans Indian Inst Met 73, 1497–1501 (2020). https://doi.org/10.1007/s12666-020-01895-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01895-y

Keywords

Navigation