Skip to main content

Advertisement

Log in

Copper Chalcopyrites for Solar Energy Applications

  • Review Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Solar photovoltaic (PV) technology is a reliable and environmental friendly alternative for electricity generation. There are a number of solar PV technologies at different maturity levels, ranging from well-established and commercialized silicon PV to still in conceptual and R&D phase quantum dot and organic/polymer solar cells. Chalcopyrite solar cells, named so because of the thin absorber layer of Cu-based chalcopyrite materials used in these cells, are one of the frontrunners in thin-film PV technology owing to their tunable direct bandgap, large absorption coefficient and long-term stability. Among all Cu-chalcopyrite materials, copper indium selenide (CISe) and copper indium gallium selenide (CIGSe) are most suitable for use as light-absorbing layer. Although CISe and CIGSe absorber-based PV modules are being produced commercially for several years now, the technology is yet to mature fully as there is still scope for improvement in efficiency, manufacturability and cost reduction. The present article discusses the status of CISe-/CIGSe-based thin-film PV technology while primarily focusing on the absorber material. Different vacuum and non-vacuum methods for fabricating these materials are reviewed along with their merits/demerits and suitability to large-scale production. Current status of commercial maturity for CIGSe PV is discussed while providing general process details of selected industrial manufacturers. Existing bottlenecks for this technology are deliberated, and future directions for improvement in laboratory-scale efficiency and manufacturability are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Renewables 2017 Global Status Report (2017).

  2. Dharmadasa I M, Advances in Thin-Film Solar Cells, Pan Stanford Publishing, Singapore (2013).

    Google Scholar 

  3. Jäger-Waldau A, PV Status Report 2017 (2017).

  4. Energy Technology Perspectives 2017 (2017).

  5. Abou-Ras D, Kirchartz T, and Rau U, Wiley-VCH Verlag GmbH & Co. KGaA, in Advanced Characterization Techniques for Thin Film Solar Cells, Weinheim (2011).

  6. Green M A, Hishikawa Y, Warta W, Dunlop E D, Levi D H, Hohl-Ebinger J, and Ho-Baillie A W, Prog Photovolt Res Appl 25 (2017) 668.

    Google Scholar 

  7. Green M A, Emery K, Hishikawa Y, Warta W, and Dunlop E D, Prog Photovolt Res Appl 22 (2014) 1.

    Google Scholar 

  8. Polman A, Knight M, Garnett E C, Ehrler B, and Sinke W C, Science 352 (2016) 4424.

    Google Scholar 

  9. Chang J C, Guo J W, Hsieh T P, Yang M R, Chiou D W, Cheng H T, Yeh C L, Li C C, and Chu S Y, Surf Coat Technol 231 (2013) 573.

    Google Scholar 

  10. Scofield J H, Duda A, Albin D, Ballard B L, and Predecki P K, Thin Solid Films 260 (1995) 26.

    Google Scholar 

  11. Matson R J, Jamjoum O, Buonaquisti A D, Russell P E, Kazmerski L L, Sheldon P, and Ahrenkiel R K, Sol Cells 11 (1984) 301.

    Google Scholar 

  12. Moons E, Engelhard T, and Cahen D, J Electron Mater 22 (1993) 275.

    Google Scholar 

  13. Hoffman R A, Lin J C, and Chambers J P, Thin Solid Films 206 (1991) 230.

    Google Scholar 

  14. Gordillo G, Grizález M, and Hernandez L C, Sol Energy Mater Sol Cells 51 (1998) 327.

    Google Scholar 

  15. Martínez M A, and Guillén C, Surf Coat Technol 110 (1998) 62.

    Google Scholar 

  16. Assmann L, Bernède J C, Drici A, Amory C, Halgand E, and Morsli M, Appl Surf Sci 246 (2005) 159.

    Google Scholar 

  17. Boosagulla D, Mandati S, Allikayala R, and Sarada B V, ECS J Solid State Sci Technol 7 (2018) P440.

    Google Scholar 

  18. Chen W S, Stewart J M, Stanbery B J, Devaney W E, and Mickelsen R A, in 19th IEEE Photovoltaic Specialists Conference, New Orleans (1987), pp 1445.

  19. Nakada T, Furumi K, and Kunioka A, IEEE Trans Electron Devices 46 (1999) 2093.

    Google Scholar 

  20. Ennaoui A, Siebentritt S, Lux-Steiner M C, Riedl W, and Karg F, Sol Energy Mater Sol Cells 67 (2001) 31.

    Google Scholar 

  21. Negami T, Aoyagi T, Satoh T, Shimakawa S, Hayashi S, and Hashimoto Y, in Proceedings of 29th IEEE Photovoltaic Specialist Conference, New Orleans, USA (2002), p 656.

  22. D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla, and A. N. Tiwari, J Appl Phys 97 (2005) 084908.

    Google Scholar 

  23. Abou-Ras D, Kostorz G, Strohm A, Schock H-W, and Tiwari A N, J Appl Phys 98 (2005) 123512.

    Google Scholar 

  24. Konagai M, Ohtake Y, and Okamoto T, in Materials Research Society Symposia Proceedings (1996), p 153.

  25. Yamada A, Chaisitsak S, Othake Y, and Konagai M, in Proceedings of 2nd World Conference of Photovoltaic Energy Conversion Vienna, Austria (1998), p 1177.

  26. Jackson P, Hariskos D, Wuerz R, Wischmann W, and Powalla M, Phys Status Solidi RRL 8 (2014) 219.

    Google Scholar 

  27. Jackson D H P, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, and Powalla M, Prog Photovolt Res Appl 19 (2011) 894.

    Google Scholar 

  28. Misra P, Ganeshan V, and Agrawal N, J Alloys Compd 725 (2017) 60.

    Google Scholar 

  29. Chamberlin R R, and Skarman J S, Solid State Electron 9 (1966) 819.

    Google Scholar 

  30. Ramanujam J, and Singh U P, Energy Environ Sci 10 (2017) 1306.

    Google Scholar 

  31. Zhang S B, Wei S-H, Zunger A, and Katayama-Yoshida H, Phys Rev B 57 (1998) 9642.

    Google Scholar 

  32. Shafarman W N, and Stolt L, in Handbook of Photovoltaic Science and Engineering, (eds) Luque A, and Hegedus S, Wiley, London (2003), pp 567.

    Google Scholar 

  33. Noufi R, Axton R, Herrington C, and Deb S, Appl Phys Lett 45 (1984) 668.

    Google Scholar 

  34. Neumann H, and Tomlinson R D, Sol Cells 28 (1990) 301.

    Google Scholar 

  35. Herberholz R, Rau U, Schock H W, Haalboom T, Gödecke T, Ernst F, Beilharz C, Benz K W, and Cahen D, Eur Phys J Appl Phys 6 (1999) 131.

    Google Scholar 

  36. Schroeder D J, and Rockett A A, J Appl Phys 82 (1997) 4982.

    Google Scholar 

  37. Wei S H, Zhang S B, and Zunger A, Appl Phys Lett 72 (1998) 3199.

    Google Scholar 

  38. Niles D W, Ramanathan K, Hasoon F, Noufi R, Tielsch B J, and Fulghum J E, J Vac Sci Technol A 15 (1997) 3044.

    Google Scholar 

  39. Oikkonen L E, Ganchenkova M G, Seitsonen A P, and Nieminen R M, J Appl Phys 114 (2013) 083503.

    Google Scholar 

  40. Shin D, Kim J, Gershon T, Mankad R, Hopstaken M, Guha S, Ahn B T, and Shin B, Sol Energy Mater Sol Cells 157 (2016) 695.

    Google Scholar 

  41. Ruckh M, Schmid D, Kaiser M, Schäffler R, Walter T, and Schock H, Sol Energy Mater Sol Cells 41 (1996) 335.

    Google Scholar 

  42. Wei S H, Zhang S B, and Zunger A, J Appl Phys 85 (1999) 7214.

    Google Scholar 

  43. Granath K, Bodegård M, and Stolt L, Sol Energy Mater Sol Cells 60 (2000) 279.

    Google Scholar 

  44. Salome P M, Hultqvist A, Fjällström V, Edoff M, Aitken B, Zhang K, Fuller K, and Williams C K, IEEE J Photovolt 4 (2014) 1659.

    Google Scholar 

  45. Hartmann M, Schmidt M, Jasenek A, Schock H W, Kessler F, Herz K, and Powalla M, in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference2000 (Cat. No. 00CH37036) (2000), pp 638.

  46. Kazmerski L, Hallerdt M, Ireland P, Mickelsen R, and Chen W, J Vac Sci Technol A Vac Surf Films 1 (1983) 395.

    Google Scholar 

  47. Rincón C, and González J, Sol Cells 16 (1986) 357.

    Google Scholar 

  48. Alonso M I, Garriga M, Rincón C D, Hernández E, and León M, Appl Phys A 74 (2002) 659.

    Google Scholar 

  49. Hirai Y, Kurokawa Y, and Yamada A, Jpn J Appl Phys 53 (2013) 012301.

    Google Scholar 

  50. Repins I, Glynn S, Duenow J, Coutts T, Metzger W, and Contreras M, Required Materials Properties for High-Efficiency Cigs Modules: Preprint (2009).

  51. Huang C H, Lin C P, and Jan Y L, Semicond Sci Technol 31 (2016) 085004.

    Google Scholar 

  52. Lindahl J, Zimmermann U, Szaniawski P, Torndahl T, Hultqvist A, Salome P, Platzer-Bjorkman C, and Edoff M, IEEE J Photovolt 3 (2013) 1100.

    Google Scholar 

  53. Sim J K, Ashok K, and Lee C R, Met Mater Int 19 (2013) 303.

    Google Scholar 

  54. Kamada R, Yagioka T, Adachi S, Handa A, Tai K F, Kato T, and Sugimoto H, in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) (2017), pp 1.

  55. Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, and Powalla M, Phys Status Solidi (RRL) Rapid Res Lett 10 (2016) 583.

    Google Scholar 

  56. Shafarman W N, and Zhu J, Thin Solid Films 361 (2000) 473.

    Google Scholar 

  57. Mickelsen R, and Chen W S, Appl Phys Lett 36 (1980) 371.

    Google Scholar 

  58. Binetti S, Garattini P, Mereu R, Le Donne A, Marchionna S, Gasparotto A, Meschia M, Pinus I, and Acciarri M, Semicond Sci Technol 30 (2015) 105006.

    Google Scholar 

  59. Gabor A M, Tuttle J R, Albin D S, Contreras M A, Noufi R, and Hermann A M, Appl Phys Lett 65 (1994) 198.

    Google Scholar 

  60. Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, and Uhl A R, Nat Mater 10 (2011) 857.

    Google Scholar 

  61. Gabor A, Tuttle J, Bode M, Franz A, Tennant A, Contreras M, Noufi R, Jensen D, and Hermann A, Sol Energy Mater Sol Cells 4142 (1996) 247.

    Google Scholar 

  62. Jackson P, Würz R, Rau U, Mattheis J, Kurth M, Schlötzer T, Bilger G, and Werner J H, Prog Photovolt Res Appl 15 (2007) 507.

    Google Scholar 

  63. Mickelsen R, Chen W, Stanbery B, Dursch H, Stewart J, Hsiao Y, and Devaney W, in Proceedings of the 16th IEEE Photovoltaic Specialists Conference, IEEE, New York (1982), p 781.

  64. Stolt L, Hedström J, and Sigurd D, J Vac Sci Technol A Vac Surf Films 3 (1985) 403.

    Google Scholar 

  65. Powalla M, Voorwinden G, and Dimmler B, in Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, p 1270.

  66. Nishitani M, Negami T, and Wada T, Thin Solid Films 258 (1995) 313.

    Google Scholar 

  67. Negami T, Nishitani M, Kohara N, Hashimoto Y, and Wada T, Mater Res Soc Symp P 426 (1996) 267.

  68. Chen G S, Yang J C, Chan Y C, Yang L C, and Huang W, Sol Energy Mater Sol Cells 93 (2009) 1351.

    Google Scholar 

  69. Moon J H, Choi H W, Kim K H, Kim J H, and Park S J, J Nanosci Nanotechnol 12 (2012) 656.

    Google Scholar 

  70. Xue M, Liu J J, Huang Y Q, Han K K, Hu J X, Cheng K, Wu S X, and Du Z L, Mater Lett 152 (2015) 240.

    Google Scholar 

  71. Knowles A, Oumous H, Carter M, and Hill R, Semicond Sci Technol 3 (1988) 1143.

    Google Scholar 

  72. Hermann A M, Mansour M, Badri V, Pinkhasov B, Gonzales C, Fickett F, Calixto M E, Sebastian P J, Marshall C H, and Gillespie T J, Thin Solid Films 361362 (2000) 74.

    Google Scholar 

  73. Koo J, Kim S C, Park H, and Kim W K, Thin Solid Films 520 (2011) 1484.

    Google Scholar 

  74. Li W, Sun Y, Liu W, and Zhou L, Sol Energy 80 (2006) 191.

    Google Scholar 

  75. Liang H F, Avachat U, Liu W, van Duren J, and Le M, Solid State Electron 76 (2012) 95.

    Google Scholar 

  76. Han J, Koo J, Jung H, and Kim W K, J Alloys Compd 552 (2013) 131.

    Google Scholar 

  77. Mooney G D, Hermann A M, Tuttle J R, Albin D S, and Noufi R, Appl Phys Lett 58 (1991) 2678.

    Google Scholar 

  78. Dhere N, and Lynn K, Sol Energy Mater Sol Cells 4142 (1996) 271.

    Google Scholar 

  79. Gupta A, and Isomura S, Sol Energy Mater Sol Cells 53 (1998) 385.

    Google Scholar 

  80. Hanket G M, Shafarman, W N, McCandless B E, and Birkmire R W, J Appl Phys 102 (2007) 074922.

    Google Scholar 

  81. Jensen C L, Tarrant D E, Ermer J H, and Pollock G A, in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference1993 (Cat. No.93CH3283-9) (1993), pp 577.

  82. Dullweber T, Lundberg O, Malmström J, Bodegård M, Stolt L, Rau U, Schock H-W, and Werner J H, Thin Solid Films 387 (2001) 11.

    Google Scholar 

  83. Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, and Matsubara K, Prog Photovolt Res Appl 18 (2010) 453.

    Google Scholar 

  84. Huang P C, Sung C C, Chen J H, Hsiao R C, and Hsu C Y, J Mater Sci Mater Electron 29 (2018) 1444.

    Google Scholar 

  85. Kim J, Lee H-S, and Park N-M, in SPIE Solar Energy + Technology, SPIE (2013), p 6.

  86. Park N-M, Lee H S, Cho D-H, Chung Y-D, Kim K-H, Lee K-S, and Kim J, Prog Photovolt Res Appl 20 (2012) 899.

    Google Scholar 

  87. Guenoun K, Djessas K, and Massé G, J Appl Phys 84 (1998) 589.

    Google Scholar 

  88. Venkatachalam M, Kannan M D, Jayakumar S, Balasundaraprabhu R, and Muthukumarasamy N, Thin Solid Films 516 (2008) 6848.

    Google Scholar 

  89. Chen J Y, Shen H L, Zhai Z H, Li J Z, Wang W, Shang H R, and Li Y F, J Phys D Appl Phys 49 (2016) 495601.

    Google Scholar 

  90. Li L L, Ding T Z, He J, and Han L, J Funct Mater Devices 17 (2011) 500.

    Google Scholar 

  91. Yu Z, JiaDa W, and Ning X, Mater Res Express 3 (2016) 106402.

    Google Scholar 

  92. Islam M M, Sakurai T, Ishizuka S, Yamada A, Shibata H, Sakurai K, Matsubara K, Niki S, and Akimoto K, J Cryst Growth 311 (2009) 2212.

    Google Scholar 

  93. Niki S, Yamada A, Hunger R, Fons P J, Iwata K, Matsubara K, Nishio A, and Nakanishi H, J Cryst Growth 237 (2002) 1993.

    Google Scholar 

  94. Hibberd C J, Chassaing E, Liu W, Mitzi D B, Lincot D, and Tiwari A N, Prog Photovolt Res Appl 18 (2010) 434.

    Google Scholar 

  95. Lincot J F G D, Taunier S, Guimard D, Sicx-Kurdi J, Chaumont A, Roussel O, Ramdani O, Hubert C, Fauvarque J P, Bodereau N, Parissi L, Panheleux P, Fanouillere P, Naghavi N, Grand P P, Benfarah M, Mogensen P, and Kerrec O, Sol Energy 77 (2004) 725.

    Google Scholar 

  96. Bhattacharya R N, J Electrochem Soc 130 (1983) 2040.

    Google Scholar 

  97. Hodes G, Engelhard T, Cahen D, Kazmerski L L, and Herrington C R, Thin Solid Films 128 (1985) 93.

    Google Scholar 

  98. Herrero J, and Ortega J, Sol Energy Mater 20 (1990) 53.

    Google Scholar 

  99. Massaccesi S, Sanchez S, and Vedel J, J Electroanal Chem 412 (1996) 95.

    Google Scholar 

  100. Lincot D, Thin Solid Films 487 (2005) 40.

    Google Scholar 

  101. Bhattacharya W B R N, Hiltner J F, and Sites J R, Appl Phys Lett 75 (1999) 1431.

    Google Scholar 

  102. Bhattacharya R N, Oh M-K, and Kim Y, Sol Energy Mater Sol Cells 98 (2012) 198.

    Google Scholar 

  103. Bhattacharya R N, and Fernandez A M, Sol Energy Mater Sol Cells 76 (2003) 331.

    Google Scholar 

  104. Bhattacharya R N, Sol Energy Mater Sol Cells 113 (2013) 96.

    Google Scholar 

  105. Broussillou C, Viscogliosi C, Rogee A, Angle S, Grand P P, Bodnar S, and Debauche C, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (2015), pp 1.

  106. Aksu S, Pethe S, Kleiman-Shwarsctein A, Kundu S, and Pinarbasi M, in 38th IEEE Photovotaics Specialists Conference (2012), p 003092.

  107. Mandati S, Sarada B V, Dey S R, and Joshi S V, in Semiconductors: Growth and characterization, (ed) Inguanta R, IntechOpen, London (2018), pp 109.

    Google Scholar 

  108. Mandati S, Phys Rev D 82 (2015) 1.

    Google Scholar 

  109. Mandati S, Sarada B V, Dey S R, and Joshi S V, J Renew Sustain Energy 5 (2013) 031602.

    Google Scholar 

  110. Mandati S, Sarada B V, Dey S R, and Joshi S V, Electron Mater Lett 11 (2015) 618.

    Google Scholar 

  111. Mandati S, Sarada B V, Dey S R, and Joshi S V, J Electrochem Soc 160 (2013) D173.

    Google Scholar 

  112. Mandati S, Sarada B V, Dey S R, and Joshi S V, Mater Lett 118 (2014) 158.

    Google Scholar 

  113. Mandati S, Sarada B V, Dey S R, and Joshi S V, ACS Sustain Chem Eng (in press) (2018). https://doi.org/10.1021/acssuschemeng.8b01840.

  114. Mandati S, Sarada B V, Dey S R, and Joshi S V, in SemiconductorsGrowth and Characterization, (eds) Inguanta R, and Sunseri C, InTech, Rijeka (2018), p Ch. 06.

    Google Scholar 

  115. Bi J, Yao L, Ao J, Gao S, Sun G, He Q, Zhou Z, Sun Y, and Zhang Y, J Power Sour 326 (2016) 211.

    Google Scholar 

  116. Mandati S, Sarada B V, Dey S R, and Joshi S V, J Power Sour 273 (2015) 149.

    Google Scholar 

  117. Jadhav H S, Kalubarme R S, Ahn S, Yun J H, and Park C-J, Appl Surf Sci 268 (2013) 391.

    Google Scholar 

  118. Valdés M, and Vázquez M, J Solid State Electrochem 16 (2012) 3825.

    Google Scholar 

  119. Liu F, Huang C, Lai Y, Zhang Z, Li J, and Liu Y, J Alloys Compd 509 (2011) L129.

    Google Scholar 

  120. Bi J, Ao J, Gao Q, Zhang Z, Sun G, He Q, Zhou Z, Sun Y, and Zhang Y, ACS Appl Mater Interfaces 9 (2017) 18682.

    Google Scholar 

  121. Kapur V K, Bansal A, Le P, and Asensio O I, Thin Solid Films 431432 (2003) 53.

    Google Scholar 

  122. Panthani M G, Akhavan V, Goodfellow B, Schmidtke J P, Dunn L, Dodabalapur A, Barbara P F, and Korgel B A, J Am Chem Soc 130 (2008) 16770.

    Google Scholar 

  123. Qijie G, Ford G M, Rakesh A, and Hillhouse H W, Prog Photovolt Res Appl 21 (2013) 64.

  124. McLeod S M, Charles J, Nathaniel J C, and Rakesh A, Prog Photovolt Res Appl 23 (2015) 1550.

    Google Scholar 

  125. Brown G, Stone P, Woodruff J, Cardozo B, and Jackrel D, in 2012 38th IEEE Photovoltaic Specialists Conference (2012), pp 003230.

  126. Todorov T K, Gunawan O, Gokmen T, and Mitzi D B, Prog Photovolt Res Appl 21 (2013) 82.

    Google Scholar 

  127. Kamada R, Yagioka T, Adachi S, Handa A, Tai K F, Kato T, and Sugimoto H, in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (2016), pp 1287.

  128. Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M, and Powalla M, Phys Status Solidi (RRL) Rapid Res Lett 9 (2015) 28.

    Google Scholar 

  129. Yin G, Brackmann V, Hoffmann V, and Schmid M, Sol Energy Mater Sol Cells 132 (2015) 142.

    Google Scholar 

  130. Duchatelet A, Letty E, Jaime-Ferrer S, Grand P P, Mollica F, and Naghavi N, Sol Energy Mater Sol Cells 162 (2017) 114.

    Google Scholar 

  131. Hong J, Lim D, Eo Y-J, and Choi C, Appl Surf Sci 432 (2018) 250.

    Google Scholar 

  132. Kobayashi T, Kao Z J L, and Nakada T, Sol Energy Mater Sol Cells 143 (2015) 159.

    Google Scholar 

  133. Bauer A, Sharbati S, and Powalla M, Sol Energy Mater Sol Cells 165 (2017) 119.

    Google Scholar 

  134. Taizo K, Hiroshi Y, and Tokio N, Prog Photovolt Res Appl 22 (2014) 115.

    Google Scholar 

  135. Romanyuk Y E, Hagendorfer H, Stücheli P, Fuchs P, Uhl A R, Sutter‐Fella C M, Werner M, Haass S, Stückelberger J, Broussillou C, and Grand P P, Adv Funct Mater 25 (2015) 12.

    Google Scholar 

  136. Feurer T, Reinhard P, Avancini E, Bissig B, Löckinger J, Fuchs P, Carron R, Weiss T P, Perrenoud J, Stutterheim S, and Buecheler S, Prog Photovolt 25 (2017) 645.

    Google Scholar 

  137. https://www.manz.com/markets/solar/cigs-fab/success-factors/. Last accessed May 22, 2018.

  138. https://solibro-solar.com/en/. Last accessed May 23, 2018.

  139. https://flisom.com/products/. Last accessed May 22, 2018.

  140. http://www.globalsolar.com/. Last accessed May 23, 2018.

  141. http://www.ascentsolar.com/. Last accessed May 23, 2018.

  142. http://www.solarfrontier.com/eng/solutions/products/index.html. Last accessed May 23, 2018.

  143. http://www.avancis.de/en/. Last accessed May 23, 2018.

  144. http://miasole.com/products/. Last accessed May 23, 2018.

  145. http://midsummer.se/applications. Last accessed May 23, 2018.

  146. http://www.ips.co.kr/eng_main/sub3-6.php. Last accessed May 23, 2018.

  147. http://www.hulket.com/. Last accessed May 23, 2018.

  148. http://www.stion.com/products/. Last accessed May 23, 2018.

  149. http://solopower.com/products/. Last accessed May 23, 2018.

  150. Yin W J, Yang J H, Kang J, Yan Y F, and Wei S H, J Mater Chem A A 3 (2015) 8926.

    Google Scholar 

  151. Guchhait A, Dewi H A, Leow S W, Wang H, Han G, Suhaimi F B, Mhaisalkar S, Wong L H, and Mathews N, ACS Energy Lett 2 (2017) 807.

    Google Scholar 

  152. Philipps S, and Warmuth W, Photovoltaics Report, Fraunhofer ISE, updated: 26 February (2018).

  153. Yang J, Jiang Y L, Li L J, and Gao M Z, Appl Surf Sci 421 (2017) 446.

    Google Scholar 

  154. Zeng X B, Wen X X, Sun X H, Liao W G, and Wen Y Y, Thin Solid Films 605 (2016) 257.

    Google Scholar 

  155. Nakagawara O, Kishimoto Y, Seto H, Koshido Y, Yoshino Y, and Makino T, Appl Phys Lett 89 (2006) 091904.

    Google Scholar 

  156. Delahoy A E, and Guo S, in Handbook of Photovoltaic Science and Engineering, (eds) Luque A, and Hegedus S, Wiley, London (2011).

    Google Scholar 

  157. Peike C, Hädrich I, Weiß K-A, and Dürr I, Photovolt Int 19(2013) 85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bulusu V. Sarada or Tata Narasinga Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandati, S., Misra, P., Sarada, B.V. et al. Copper Chalcopyrites for Solar Energy Applications. Trans Indian Inst Met 72, 271–288 (2019). https://doi.org/10.1007/s12666-018-1455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1455-0

Keywords

Navigation