Skip to main content
Log in

New Absorbers for Third-Generation Thin-Film Solar Cells Based on Cu–A–B–S–Se (A = Ba, Sr, Fe, Ni, or Mn; B = Si, Ge, or Sn) Quaternary Copper Compounds (Review)

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Literature on new semiconductors, quaternary copper compounds Cu2AIIBIVS(Se)4 where A = Mg, Ca, Sr, Ba, Fe,Ni,Co, Cd, or Cr; and B = Sn, Pb, Si, Ge, Ti, Zr, or Hf, is reviewed. Compounds of this family can substitute for the more abundant Cu1 – δIn1 – xGaxSe2 (CIGS) chalcopyrites and Cu2 – δZnSnS4 – ySey (CZTSSe) kesterites used for thin-film solar cells. The review summarizes evidence from the world literature on optical and electrophysical properties of those compounds, the specifics of their manufacturing and solar cells based on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034

    Article  CAS  Google Scholar 

  2. M. A. Zykin, T. G. Aminov, V. V. Minin, et al., Russ. J. Inorg. Chem. 66, 113 (2021). https://doi.org/10.1134/S0036023621010137

    Article  CAS  Google Scholar 

  3. V. V. Rakitin and G. F. Novikov, Russ. Chem. Rev. 82, 99 (2017). https://doi.org/10.1070/RCR4633

    Article  Google Scholar 

  4. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons Ltd, West Sussex, UK, 2011).

    Google Scholar 

  5. S. A. Ivanov and A. I. Stash, Russ. J. Inorg. Chem. 65, 1789 (2020). https://doi.org/10.1134/S0036023620120049

    Article  CAS  Google Scholar 

  6. M. S. Kumar, S. P. Madhusudanana, and S. K. Batabyal, Sol. Energy Mater. Sol. Cells 185, 287 (2018). https://doi.org/10.1016/j.solmat.2018.05.003

    Article  CAS  Google Scholar 

  7. K. Ito, Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells (John Wiley and Sons Ltd., West Sussex, UK, 2015).

    Google Scholar 

  8. Ghosh Anima, R. Thangavel, and M. Rajagopalan, Energy Environ. Focus 3, 142 (2014). https://doi.org/10.1166/eef.2014.1080

  9. Guohua Zhong, Kinfai Tse, Yiou Zhang, et al., Thin Solid Films 603, 224 (2016). https://doi.org/10.1016/j.tsf.2016.02.005

    Article  CAS  Google Scholar 

  10. Pandey Mohnish and Karsten W. Jacobsen, Phys. Rev. Mater. 2, 105402 (2018). https://doi.org/10.1103/PhysRevMaterials.2.105402

    Article  Google Scholar 

  11. Gang Yang, Xiaoli Zhai, Yongfeng Li, et al. Mater. Lett. 242, 58 (2019). https://doi.org/10.1016/j.matlet.2019.01.102

    Article  CAS  Google Scholar 

  12. Mehdi Souli, Raya Engazou, Lassaad Ajili, et al. // Superlattices Microstruct. 147, 106711 (2020). https://doi.org/10.1016/j.spmi.2020.106711

    Article  CAS  Google Scholar 

  13. Ming Wei, Qingyang Du, Rong Wang, et al., Chem. Lett. 43, 1149 (2014). https://doi.org/10.1246/cl.140208

    Article  CAS  Google Scholar 

  14. V. P. Kumar, E. Guilmeau, B. Raveau, et al., J. Appl. Phys. 118, 155101 (2015). https://doi.org/10.1063/1.4933277

    Article  CAS  Google Scholar 

  15. I. N. Odin, M. V. Gapanovich, O. Yu. Urkhanov, et al., Inorg. Mater. 57, 1 (2021). https://doi.org/10.1134/S0020168521010118

    Article  CAS  Google Scholar 

  16. S. Sharm and P. Kumar, J. Phys. Commun. 1, 045014 (2017). https://doi.org/10.1088/2399-6528/aa9286

    Article  CAS  Google Scholar 

  17. D. Shin, B. Saparov, T. Zhu, et al., Chem. Mater. 28, 4771 (2016). https://doi.org/10.1021/acs.chemmater.6b01832

    Article  CAS  Google Scholar 

  18. C. L. Teske, Z. Anorg. Allg. Chem. 419, 67 (1976). https://doi.org/10.1002/zaac.19764190112

    Article  CAS  Google Scholar 

  19. A. Crovetto, R. Nielsen, E. Stamate, et al., ACS Appl. Energy Mater. 2, 7340 (2019). https://doi.org/10.1021/acsaem.9b01322

    Article  CAS  Google Scholar 

  20. Zhengfu Tong, Jiangyuan Yuan, Jiarui Chen, et al., Mater. Lett. 237, 130 (2019). https://doi.org/10.1016/j.matlet.2018.11.083

    Article  CAS  Google Scholar 

  21. Hanrui Xiao, Zhu Chen, Kaiwen Sun, et al., Thin Solid Films 697, 137828 (2020). https://doi.org/10.1016/j.tsf.2020.137828

    Article  CAS  Google Scholar 

  22. Zhu Tong, Huhn P. William, and Garrett C. Wessler, et al., Chem. Mater. 29, 7868 (2017). https://doi.org/10.1021/acs.chemmater.7b02638

    Article  CAS  Google Scholar 

  23. Haitian Luo, Yi Zhang, Wenjing Wang, et al., Appl. PPS, Mater. Sci. 217, 200060 (2020). https://doi.org/10.1002/pssa.202000060

    Article  CAS  Google Scholar 

  24. J. A. Márquez, J.-P. Sun, H. Stange, et al., J. Mater. Chem. A 8, 11346 (2020). https://doi.org/10.1039/D0TA02348E

    Article  Google Scholar 

  25. J. Ge, P. Koirala, C. R. Grice, et al., Adv. Energy Mater. 7, 1601803 (2017). https://doi.org/10.1002/aenm.201601803

    Article  CAS  Google Scholar 

  26. J. Ge, Grice R. Corey, and Yanfa Yan, J. Mater. Chem. A 5, 2920 (2017). https://doi.org/10.1039/C6TA08426E

    Article  CAS  Google Scholar 

  27. J. Ge, Y. Yu, and Y. Yan, ACS Energy Lett. 1, 583 (2016). https://doi.org/10.1021/acsenergylett.6b00324

    Article  CAS  Google Scholar 

  28. D. Shin, T. Zhu, X. Huang, et al., Adv. Mater. 29, 1606945 (2017). https://doi.org/10.1002/adma.201606945

    Article  CAS  Google Scholar 

  29. M. Eibschütz, E. Hermon, and S. Shtrikman, J. Phys. Chem. Solids 28, 1633 (1967). https://doi.org/10.1016/0022-3697(67)90134-5

    Article  Google Scholar 

  30. C. Rincón, M. Quintero, Ch. Power, et al., J. Appl. Phys. 117, 205701 (2015). https://doi.org/10.1063/1.4921438

    Article  CAS  Google Scholar 

  31. Hao Guan, Honglie Shen, Baoxiang Jiao, et al. // Mater. Sci. Semicond. Process. 25, 159 (2014). https://doi.org/10.1016/j.mssp.2013.10.021

    Article  CAS  Google Scholar 

  32. S. Chatterjee and J. P. Amlan, Sol. Energy Mater. Sol. Cells 160, 233 (2017). https://doi.org/10.1016/j.solmat.2016.10.037

    Article  CAS  Google Scholar 

  33. M. Adelifard, J. Analyt. Appl. Pyrolysis 122, 209 (2016). https://doi.org/10.1016/j.jaap.2016.09.022

    Article  CAS  Google Scholar 

  34. Jicheng Zhou, Shiqi Yu, Xiaowei Guo, et al., Appl. Current Phys. 19, 67 (2019). https://doi.org/10.1016/j.cap.2018.10.014

    Article  Google Scholar 

  35. R. Deepika and P. Meena, Mater. Res. Express 7, 035012 (2020). https://doi.org/10.1088/2053-1591/ab7c21

    Article  CAS  Google Scholar 

  36. M. Quintero, A. Barreto, P. Grima, et al., Mater. Res. Bull. 34, 2263 (1999). https://doi.org/10.1016/S0025-5408(00)00166-5

    Article  CAS  Google Scholar 

  37. E. Quintero, M. Quintero, E. Moreno, et al., J. Phys. Chem. Solids 71, 993 (2010). https://doi.org/10.1016/j.jpcs.2010.04.010

    Article  CAS  Google Scholar 

  38. P. Kevin, S. N. Malik, M. A. Malik, et al., Mater. Lett. 152, 60 (2015). https://doi.org/10.1016/j.matlet.2015.03.087

    Article  CAS  Google Scholar 

  39. Xiankuan Meng, Huiyi Cao, Hongmei Deng, et al., Mater. Sci. Semicond. Process. 39, 243 (2015). https://doi.org/10.1016/j.mssp.2015.05.007

    Article  CAS  Google Scholar 

  40. X. R. Wang, Y. S. Guan, O. A. Ali, et al., Optoelectr. Adv. Mater. Rapid Commun. 14, 196 (2020).

    CAS  Google Scholar 

  41. Yubin Chen, Xiaoyang Feng, Maochang Liu, et al., Nanophotonics 5, 524 (2016). https://doi.org/10.1515/nanoph-2016-0027

    Article  CAS  Google Scholar 

  42. Qingfeng Song, Pengfei Qiu, Kunpeng Zhao, et al., ACS Appl. Energy Mater 3, 2137 (2020). https://doi.org/10.1021/acsaem.9b02150

    Article  CAS  Google Scholar 

  43. W. Schäfer and R. Nitsche, Mater. Res. Bull. 9, 645 (1974). https://doi.org/10.1016/0025-5408(74)90135-4

    Article  Google Scholar 

  44. C. L. Yang, Y. H. Chen, M. Lin, et al., Mater. Lett. 166, 101 (2016). https://doi.org/10.1016/j.matlet.2015.12.054

    Article  CAS  Google Scholar 

  45. M. A. Abed, N. A. Bakr, and J. Al-Zanganawee, Chalcogenide Lett. 17, 179 (2020).

    CAS  Google Scholar 

  46. D. Aitelhaj, A. Elkissani, M. Elyaagoubi, et al., Mater. Sci. Semicond. Process 107, 104811 (2020). https://doi.org/10.1016/j.mssp.2019.104811

    Article  CAS  Google Scholar 

  47. S. Rondiya, N. Wadnerkar, Y. Jadhav, et al., Chem. Mater. 29, 3133 (2017). https://doi.org/10.1021/acs.chemmater.7b00149

    Article  CAS  Google Scholar 

  48. Z. Dehghani and Z. Shadrokh, Optik 169, 242 (2018). https://doi.org/10.1016/j.ijleo.2018.05.052

    Article  CAS  Google Scholar 

  49. Q. Zhang, H. Li, Y. Ma, et al., Prog. Mater Sci. 83, 472 (2016). https://doi.org/10.1016/j.pmatsci.2016.07.005

    Article  CAS  Google Scholar 

  50. M. V. Gapanovich, E. V. Rabenok, B. I. Golovanov, et al., Phys. Solid State (2021) [in Press].

  51. I. Repins, C. Beall, N. Vora, et al., Sol. Energy Mater. Sol. Cells 101, 154 (2012). https://doi.org/10.1016/j.solmat.2012.01.008

    Article  CAS  Google Scholar 

  52. L. D. Gulay, O. P. Nazarchuk, and I. D. Olekseyuk, J. Alloys Compd. 377, 306 (2004). https://doi.org/10.1016/j.jallcom.2004.02.004

    Article  CAS  Google Scholar 

  53. M. Quinteroa, J. Marquina, E. Quintero, et al., Rev. Mex. Fis. 60, 168 (2014).

    Google Scholar 

  54. H. Hammami, M. Marzougui, H. Oueslati, et al., Optik 227, 166054 (2021). https://doi.org/10.1016/j.ijleo.2020.166054

    Article  CAS  Google Scholar 

  55. B. Murali, M. Madhuri, and S. B. Krupanidhi, Cryst. Growth Des. 14, 3685 (2014). https://doi.org/10.1021/cg500622f

    Article  CAS  Google Scholar 

  56. M. Beraich, M. Taibi, A. Guenbour, et al., Optik 193, 162996 (2019).

    Article  CAS  Google Scholar 

  57. 2 32, 106103. https://doi.org/10.1016/j.ijleo.2019.162996

  58. K. Mokurala, Yun Jae Jeong, K. M. Rajneesh, et al., Mater. Sci. Semicond. Process. 121, 105443 (2021). https://doi.org/10.1016/j.mssp.2020.105443

    Article  CAS  Google Scholar 

  59. K. Mokurala, S. Mallick, and P. Bhargava, J. Power Sources 305, 134 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.081

    Article  CAS  Google Scholar 

  60. P. S. Maldar, A. A. Mane, S. S. Nikam, et al., Thin Solid Films 709, 138236 (2020). https://doi.org/10.1016/j.tsf.2020.138236

    Article  CAS  Google Scholar 

  61. A. Ghosh, R. Thangavel, and M. Rajagopalan, Energy Environ. Focus 3, 142 (2014). https://doi.org/10.1166/eef.2014.1080

    Article  Google Scholar 

  62. Lei Meng, Yongfeng Li, Bin Yao, et al., J. Phys. D: Appl. Phys. 48, 445105 (2015). https://doi.org/10.1088/0022-3727/48/44/445105

    Article  CAS  Google Scholar 

  63. Huafei Guo, Yan Li, Xiang Fang, et al., Mater. Lett. 162, 97 (2016). https://doi.org/10.1016/j.matlet.2015.09.112

    Article  CAS  Google Scholar 

  64. A. Tombak, T. Kilicoglu, and Y. S. Ocak, Renewable Energy 146, 1465 (2020). https://doi.org/10.1016/j.renene.2019.07.057

    Article  CAS  Google Scholar 

  65. S. Hadke, S. Levcenko, G. S. Gautam, et al., Adv. Energ. Mater. 9, 1902509 (2019). https://doi.org/10.1002/aenm.201902509

    Article  CAS  Google Scholar 

  66. Z. Su, G. Liang, P. Fan, et al., Adv. Mater. 32, 2000121 (2020). https://doi.org/10.1002/adma.202000121

    Article  CAS  Google Scholar 

  67. Wangen Zhao, Gang Wang, Qingwen Tian, et al., Mater. Sol. Energy, Cells 133, 15 (2015). https://doi.org/10.1016/j.solmat.2014.10.040

    Article  CAS  Google Scholar 

  68. H. Matsushita, T. Maeda, A. Katsui, et al., J. Cryst. Growth 208, 416 (2000). https://doi.org/10.1016/S0022-0248(99)00468-6

    Article  CAS  Google Scholar 

  69. Min-Ling Liu, I-Wei Chen, Fu-Qiang Huang, et al., Adv. Mater. 21, 3808 (2009). https://doi.org/10.1063/1.3130718

    Article  CAS  Google Scholar 

  70. R. Chetty, A. Bali, and R. C. Mallik, Intermetallics 72, 17 (2016). https://doi.org/10.1016/j.intermet.2016.01.004

    Article  CAS  Google Scholar 

  71. Ming-Hung Chiang, Yaw-Shyan Fu, Cheng-Hung Shih, et al., Thin Solid Films 544, 291 (2013). https://doi.org/10.1016/j.tsf.2013.03.096

    Article  CAS  Google Scholar 

  72. Feng-Jia Fan, Bo Yu, Yi-Xiu Wang, et al., JACS 133, 15910 (2011). https://doi.org/10.1021/ja207159j

    Article  CAS  Google Scholar 

  73. L. Guen and W. S. Glaunsinger, J. Solid State Chem. 35, 10 (1980). https://doi.org/10.1016/0022-4596(80)90457-0

    Article  CAS  Google Scholar 

  74. T. Fries, Y. Shapira, F. Palacio, et al., Phys. Rev. B 56, 5424 (1997). https://doi.org/10.1103/PhysRevB.56.5424

    Article  CAS  Google Scholar 

  75. M. Quintero, E. Moreno, L. Lara, et al., J. Phys. Chem. Solids 71, 993 (2010). https://doi.org/10.1016/j.jpcs.2010.04.010

    Article  CAS  Google Scholar 

  76. M. V. Gapanovich, I. N. Odin, M. V. Chukichev, et al., Inorg. Mater. 57, 987 (2021).https://doi.org/10.1134/S0020168521010064

  77. Jiejin Yu, Hongmei Deng, Qiao Zhang, et al., Mater. Lett. 233, 111 (2018). https://doi.org/10.1016/j.matlet.2018.08.147

    Article  CAS  Google Scholar 

  78. R. R. Prabhakar, Su Zhenghua, Zeng Xin, et al., Sol. Energy Mater. Sol. Cells 157, 867 (2016). https://doi.org/10.1016/j.solmat.2016.07.006

    Article  CAS  Google Scholar 

  79. Yali Sun, Xiuling Li, Weiliang Qiao, et al., Mater. Sol. Energy, Cells 219, 110788 (2021). https://doi.org/10.1016/j.solmat.2020.110788

    Article  CAS  Google Scholar 

  80. Qingfeng Song, Pengfei Qiu, Hongyi Chen, et al., Appl. ACS, Mater. Interfaces 10, 10123 (2018). https://doi.org/10.1021/acsami.7b19791

    Article  CAS  Google Scholar 

  81. H. Hussein and A. Yazdani, Mater. Sci. Semicond. Process. 91, 58 (2019). https://doi.org/10.1016/j.mssp.2018.11.005

    Article  CAS  Google Scholar 

  82. M. V. Gapanovich and I. M. Levin, Proceedings of the Conference on Physical and Chemical Processes in Condensed Media and at Interphase Boundaries FAGRAN, Voronezh, 2021, pp. 58–60.

  83. Congcong Wang, Shiyou Chen, Ji-Hui Yang, et al., Chem. Mater. 26, 3411 (2014). https://doi.org/10.1021/cm500598x

    Article  CAS  Google Scholar 

  84. D. Fenske and A. Eichhofer, http://www.cfn.kit.edu/ downloads/research_f_nano_energy/F301–Report.pdf.

  85. X. Wang, J. Li, Z. Zhao, et al., J. Appl. Phys. 112, 023701 (2012). https://doi.org/10.1063/1.4736554

    Article  CAS  Google Scholar 

  86. H. Ahmoum, M. S. Su’ait, G. Li, et al., Indian J. Phys. 95, 281 (2021). https://doi.org/10.1007/s12648-020-01698-3

  87. D. M. Schleich and A. Wold, Mater. Res. Bull. 12, 111 (1977). https://doi.org/10.1016/0025-5408(77)90150-7

    Article  CAS  Google Scholar 

  88. S. Levcenco, D. Dumcenco, Y. S. Huang, et al., J. Alloys Compd. 509, 4924 (2011). https://doi.org/10.1016/j.jallcom.2011.01.169

    Article  CAS  Google Scholar 

  89. S. Levcenco, D. Dumcenco, Y. S. Huang, et al., J. Alloys Compd. 509, 7105 (2011). https://doi.org/10.1016/j.jallcom.2011.04.013

    Article  CAS  Google Scholar 

  90. S. Levcenco, D. O. Dumcenco, Y. P. Wang, et al., Opt. Mater. 34, 1072 (2012). https://doi.org/10.1016/j.optmat.2012.01.004

    Article  CAS  Google Scholar 

  91. H. Matsusita, T. Ichikawa, and A. Katsui, J. Mater. Sci. 40, 2003 (2005). https://doi.org/10.1007/s10853-005-1223-5

    Article  CAS  Google Scholar 

  92. H. Matsushita and A. Katsui, J. Phys. Chem. Solids 66, 1933 (2005). https://doi.org/10.1016/j.jpcs.2005.09.028

    Article  CAS  Google Scholar 

  93. S. Nakamura, T. Maeda, and T. Wada, Jpn. J. Appl. Phys. 49, 121203 (2010). https://doi.org/10.1143/JJAP.49.121203

    Article  CAS  Google Scholar 

  94. H.-R. Liu, S. Chen, Y.-T. Zhai, et al., J. Appl. Phys. 112, 093717 (2012). https://doi.org/10.1063/1.4759322

    Article  CAS  Google Scholar 

  95. S. Chen, A. Walsh, Y. Luo, et al., Phys. Rev. 82, 195203. https://doi.org/10.1103/PhysRevB.82.195203

  96. X. Zhang, D. Rao, R. Lu, et al., AIP Adv. 5, 057111 (2015). https://doi.org/10.1063/1.4920936

    Article  CAS  Google Scholar 

  97. G. Gurieva, S. Levcenko, V. Ch. Kravtsov, et al., Z. Kristallogr. 30, 507 (2015). https://doi.org/10.1515/zkri-2014-1825

    Article  CAS  Google Scholar 

  98. A. P. Litvinchuk, V. M. Dzhagan, V. O. Yukhymchuk, et al., Phys. Status Solidi 253, 1808. https://doi.org/10.1002/pssb.201600175

  99. R. Nitsche, D. F. Sargent, and P. Wild, J. Cryst. Growth 1, 52 (1967). https://doi.org/10.1016/0022-0248(67)90009-7

    Article  CAS  Google Scholar 

  100. G. Q. Yao, H. S. Shen, E. D. Honig, et al., Solid State Ionics 24, 249 (1987). https://doi.org/10.1016/0167-2738(87)90166-4

    Article  CAS  Google Scholar 

  101. K. A. Rosmus and J. A. Aitken, Acta Crystallogr. 67, 28 (2011). https://doi.org/10.1107/S1600536811008889

    Article  CAS  Google Scholar 

  102. K. A. Rosmus, C. D. Brunetta, M. N. Srnec, et al., Z. Anorg. Allg. Chem. 638, 2578 (2012). https://doi.org/10.1002/zaac.201200259

    Article  CAS  Google Scholar 

  103. M. Ya. Valakh, V. O. Yukhymchuk, I. S. Babichuk, et al., Vibr. Spectrosc. 89, 81 (2017). https://doi.org/10.1016/j.vibspec.2017.01.005

    Article  CAS  Google Scholar 

  104. A. P. Litvinchuk, V. M. Dzhagan, V. O. Yukhymchuk, et al., Phys. Rev. 90, 165201 (2014). https://doi.org/10.1103/PhysRevB.90.165201

    Article  CAS  Google Scholar 

  105. X. Zhang, D. Chen, K. Deng, et al., J. Alloys Compd. 656, 196 (2016). https://doi.org/10.1016/j.jallcom.2015.09.240

    Article  CAS  Google Scholar 

  106. S. Levcenco, D. Dumcenco, Y. S. Huang, et al., J. Appl. Phys. 108, 073508 (2010). https://doi.org/10.1063/1.3490219

    Article  CAS  Google Scholar 

  107. C. Shi, G. Shi, Z. Chen, et al., Mater. Lett. 73, 89 (2012). https://doi.org/10.1016/j.matlet.2012.01.018

    Article  CAS  Google Scholar 

  108. K. G. Lisunov, M. Guc, S. Levcenko, et al., J. Alloys Compd. 580, 481 (2013). https://doi.org/10.1016/j.jallcom.2013.06.156

    Article  CAS  Google Scholar 

  109. M. Guc, S. Levcenko, L. Dermenji, et al., Solid State Commun. 190, 44 (2014). https://doi.org/10.1016/j.ssc.2014.03.024

    Article  CAS  Google Scholar 

  110. N. N. Syrbu, V. Zalamai, M. Guc, et al., J. Alloys Compd. 635, 188 (2015). https://doi.org/10.1016/j.jallcom.2015.02.100

    Article  CAS  Google Scholar 

  111. E. Leon, S. Levcenko, R. Sema, et al., Mater. Chem. Phys. 141, 58 (2013). https://doi.org/10.1016/j.matchemphys.2013.04.024

    Article  CAS  Google Scholar 

  112. K. A. Rosmus, J. A. Brant, and S. D. Winsneski, et al., Inorg. Chem. 53, 7809 (2014). https://doi.org/10.1021/ic501310d

    Article  CAS  PubMed  Google Scholar 

  113. J. Wang, N. Yu, Y. Zhang, et al., J. Alloys Compd. 688, 923 (2016). https://doi.org/10.1016/j.jallcom.2016.07.012

    Article  CAS  Google Scholar 

  114. M. F. Weber and M. J. Dignam, Int. J. Hydrog. Energy 11, 225 (1986). https://doi.org/10.1016/0360-3199(86)90183-7

    Article  CAS  Google Scholar 

  115. J. R. Bolton, S. J. Strickler, and J. S. Connolly, Nature 316 (6028), 495 (1985). https://doi.org/10.1038/316495a0

    Article  CAS  Google Scholar 

  116. M. Vishwakarma, D. Varandani, S. M. Shivaprasad, et al., Sol. Energy Mater. Sol. Cells 174, 577 (2018). https://doi.org/10.1016/j.solmat.2017.08.018

    Article  CAS  Google Scholar 

  117. C.-I. Lee and C.-D. Kim, J. Korean Phys. Soc. 37, 364 (2000).

    CAS  Google Scholar 

  118. H. Matsushita, T. Ochiai, and A. Katsui, J. Cryst. Growth 275, e995 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.154

    Article  CAS  Google Scholar 

  119. P. U. Bhaskar, G. S. Babu, Y. B. K. Kumar, et al., Thin Solid Films 534, 249 (2013). https://doi.org/10.1016/j.tsf.2013.03.001

    Article  CAS  Google Scholar 

  120. Q. Shu, J. H. Yang, S. Chen, et al., Phys. Rev. B 87, 115208 (2013). https://doi.org/10.1103/PhysRevB.87.115208

    Article  CAS  Google Scholar 

  121. Y. Zhang, X. Sun, P. Zhang, et al., J. Appl. Phys. 111, 063709 (2012). https://doi.org/10.1063/1.3696964

    Article  CAS  Google Scholar 

  122. C. J. Hages, S. Levcenco, C. K. Miskin, et al., Prog. Photovolt.: Res. Appl. 23, 376 (2015). https://doi.org/10.1002/pip.2442

    Article  CAS  Google Scholar 

  123. S. Kim, K. M. Kim, H. Tampo, et al., Sol. Energy Mater. Sol. Cells 144, 488 (2016). https://doi.org/10.1016/j.solmat.2015.09.039

    Article  CAS  Google Scholar 

  124. S. Kim, K. M. Kim, H. Tampo, et al., Appl. Phys. Express 9, 102301 (2016). https://doi.org/10.7567/APEX.9.102301

    Article  CAS  Google Scholar 

  125. A. D. Collord and HouseH. W. Hill, Chem. Mater. 7, 2067 (2016). https://doi.org/10.1021/acs.chemmater.5b04806

    Article  CAS  Google Scholar 

  126. T. Schnabel, M. Seboui, and E. Ahlswede, RSC Adv. 7, 26 (2017). https://doi.org/10.1039/C6RA23068G

  127. S. Sahayaraj, G. Brammertz, B. Vermang, et al., Sol. Energy Mater. Sol. Cells 171, 136 (2017). https://doi.org/10.1016/j.solmat.2017.06.050

    Article  CAS  Google Scholar 

  128. O. V. Parasyuk, L. D. Gulay, Ya. E. Romanyuk, et al., J. Alloys Compd. 329, 202 (2001). https://doi.org/10.1016/S0925-8388(01)01606-1

    Article  CAS  Google Scholar 

  129. D. Caldera, M. Quintero, M. Morocoima, et al., J. Alloys Compd. 457, 221 (2008). https://doi.org/10.1016/j.jallcom.2007.03.033

    Article  CAS  Google Scholar 

  130. S. Delbos, EPJ Photovolt. 3, 35004 (2012). https://doi.org/10.1051/epjpv/2012008

  131. A. Walsh, S. Chen, S.-H. Wei, et al., Adv. Energy Mater. 2, 400 (2012). https://doi.org/10.1002/aenm.201100630

    Article  CAS  Google Scholar 

  132. S. Chen, A. Walsh, X.-G. Gong, et al., Adv. Mater. 25, 1522 (2013). https://doi.org/10.1002/adma.201203146

    Article  CAS  PubMed  Google Scholar 

  133. B. G. Mendis, M. C. J. Goodman, J. D. Major, et al., J. Appl. Phys. 112, 124508 (2012). https://doi.org/10.1063/1.4769738

    Article  CAS  Google Scholar 

  134. A. Lafond, L. Choubrac, C. Guillot-Deudon, et al., Z. Anorg. Allg. Chem. 638, 2571 (2012). https://doi.org/10.1002/zaac.201200279

    Article  CAS  Google Scholar 

  135. L. E. Valle-Rios, K. Neldner, G. Gurieva, et al., J. Alloys Compd. 657, 408 (2016). https://doi.org/10.1016/j.jallcom.2015.09.198

    Article  CAS  Google Scholar 

  136. Ya. E. Romanyuk and O. V. Parasyk, J. Alloys Compd. 348, 195 (2003). https://doi.org/10.1016/S0925-8388(02)00852-6

    Article  CAS  Google Scholar 

  137. V. F. Sears, Neutron News 3, 26 (1992). https://doi.org/10.1080/10448639208218770

    Article  Google Scholar 

  138. C. Stephan and S. Schorr, in: Neutron Applications in Materials for Energy (Springer International Publishing, 2014).

  139. G. Gurieva, D. M. Többens, M. Ya. Valakh, et al., J. Phys. Chem. Solids 99, 100 (2016). https://doi.org/10.1016/j.jpcs.2016.08.017

    Article  CAS  Google Scholar 

  140. M. Buffière, H. ElAnzeery, S. Oueslati, et al., Thin Solid Films 582, 171 (2015). https://doi.org/10.1016/j.tsf.2014.09.024

    Article  CAS  Google Scholar 

  141. Mary G. Swapna, Dipak Ramdas Nagapure, Rhishikesh Mahadev Patil, et al., Vacuum 133, 114 (2016). https://doi.org/10.1016/j.vacuum.2016.08.002

    Article  CAS  Google Scholar 

  142. Mary G. Swapna, Chandra G. Hema, Sunil M. Anantha, et al., J. Electron. Mater. 47, 800 (2018). https://doi.org/10.1007/s11664-017-5860-7

    Article  CAS  Google Scholar 

  143. H. Yoo and J. H. Kim, Thin Solid Films 518, 6567 (2010). https://doi.org/10.1016/j.tsf.2010.03.058

    Article  CAS  Google Scholar 

  144. Min Yang, Zhi Jiang, Zhishan Li, et al., Mater. Sci. Semicond. Process. 56, 238 (2016). https://doi.org/10.1016/j.mssp.2016.08.012

    Article  CAS  Google Scholar 

  145. A. Fairbrother, L. Fourdrinier, X. Fontane, et al., J. Phys. Chem. C 118, 17291 (2014). https://doi.org/10.1021/jp503699r

    Article  CAS  Google Scholar 

  146. Mary G. Swapna, Chandra G. Hema, Sunil M. Anantha, et al., Superlattices Microstruct. 117, 437 (2018). https://doi.org/10.1016/j.spmi.2018.03.065

    Article  CAS  Google Scholar 

  147. G. Brammertz, T. Kohl, J. D. Wild, et al., Thin Solid Films 670, 76 (2019). https://doi.org/10.1016/j.tsf.2018.12.015

    Article  CAS  Google Scholar 

  148. N. Benhaddou, S. Aazou, Y. Sanchez, et al., Sol. Energy Mater. Sol. Cells 216, 110701 (2020). https://doi.org/10.1016/j.solmat.2020.110701

    Article  CAS  Google Scholar 

  149. J. Li, Y. Ma, G. Chen, et al., RRL Solar 3, 800254 (2019).

    Article  Google Scholar 

  150. G. F. Novikov and M. V. Gapanovich, Phys.-Usp. 60, 161 (2017). https://doi.org/10.3367/UFNe.2016.06.037827

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 20-13-50199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Gapanovich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gapanovich, M.V., Rakitin, V.V. & Novikov, G.F. New Absorbers for Third-Generation Thin-Film Solar Cells Based on Cu–A–B–S–Se (A = Ba, Sr, Fe, Ni, or Mn; B = Si, Ge, or Sn) Quaternary Copper Compounds (Review). Russ. J. Inorg. Chem. 67, 1–27 (2022). https://doi.org/10.1134/S0036023622010041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622010041

Keywords:

Navigation