Skip to main content
Log in

Effect of Heat Input on Microstructure and Corrosion Behavior of Duplex Stainless Steel Shielded Metal Arc Welds

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present work, UNS S32750 super duplex stainless steel sheets were welded by shielded metal arc welding process with E2595 electrode using two different heat inputs, 0.54 and 1.10 kJ/mm. Microstructural investigations (optical and scanning electron microscopy) showed very small differences in the heat affected zone for both the heat inputs. The weld metals showed presence of three different morphologies of austenite—Widmanstatten, intra-granular and grain boundary austenite along with ferrite. Ferrite content in the weld region was also nearly same and did not change significantly with the increase in heat input. Both the weldments showed similar mechanical properties (ultimate tensile strength, impact strength and hardness) and failed in a ductile manner. Electrochemical studies in 3.5% NaCl solution showed the degree of sensitization to less than 1% and nearly same pitting potential for both heat inputs. Since the effect of heat input on the weld behavior was negligible, low heat input may be preffered for welding UNS S32750 super duplex stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lippold J C, and Kotecki D J, Welding Metallurgy and Weldability of Stainless Steels, Wiley Interscience, New Jersey (2005).

    Google Scholar 

  2. Nilson J O, Mater Sci Tech 8 (1992) 685.

    Article  Google Scholar 

  3. Labanowski J, J Achr Mater Manuf Eng 20 (2007) 255.

    Google Scholar 

  4. Sieurin H, and Sandstrom R, Mater Sci A 418 (2006) 250.

    Article  Google Scholar 

  5. Migiakis K, and Papadimitriou G D, J Mater Sci 44 (2009) 6372.

    Article  Google Scholar 

  6. Muthupandi V, BalaSrinivasan P, Seshadri S K, and Sundaresan S, Mater Sci Eng A 358 (2003) 9.

    Article  Google Scholar 

  7. Kou S, Welding Metallurgy, Wiley Interscience, New Jersey (2003).

    Google Scholar 

  8. Deng B, Jiang Y M, Gao G, and Li J, J Alloys Compd 493 (2010) 461.

    Article  Google Scholar 

  9. Pohl M, Storz O, and Glogowski T, Mater Charact 58 (2007) 65.

    Article  Google Scholar 

  10. Tan H, Jiang Y, Deng B, Sun T, Xu J, and Li J, Mater Charact 60 (2009) 1049.

    Article  Google Scholar 

  11. Kashiwar A, Vennela N P, Kamath S L, and Khatirkar R K, Mater Charact 74 (2012) 55.

    Article  Google Scholar 

  12. Hertzman S, Nilsson M, and Jargelius-Pettersson R, Proc. Duplex Stainless Steels 1994 Glascow Scotland: Paper I (1994).

  13. ASM Handbook, Welding Fundamental and Processes, vol. 6A, ASM International, Materials Park, OH (2011).

    Google Scholar 

  14. Schaeffler A L, Met Prog 56 (1949) 680.

    Google Scholar 

  15. Delong W, Ostrom G, and Szumachowski E, Weld J 35 (1956) 526s.

    Google Scholar 

  16. Kotecki D J, and Siewert T A, Weld Res Suppl (1992) 171s.

  17. Verma J, Taiwade R V, Khatirkar R K, and Kumar A, Mater Trans 57 (2016) 494.

    Article  Google Scholar 

  18. Tavares S S M, Pardal J M, Lima L D, Bastos I N, Nascimento A M, and DeSouza J A, Mater Charact 58 (2007) 610.

    Article  Google Scholar 

  19. Ramkumar K D, Thiruvengatam G, Sudharsan S P, Mishra D, Arivazhagan N, and Sridhar R, Mater Des 60 (2014) 125.

    Article  Google Scholar 

  20. Charles J, Duplex stainless steel. Proc. Conf. Les Editions de Physique, Paris, vol. 1 (1991), p 3.

  21. Nilsson J O, Huhtala T, Jonsson P, Karlsson L, and Wilson A, Metall Mater Trans A 27 (1996) 2196.

    Article  Google Scholar 

  22. Kotecki J D, Soldagem & Inspeção 15 (2010) 336.

    Article  Google Scholar 

  23. Verma J, and Taiwade R V, J Mater Eng Perform 25 (2016) 4706.

    Article  Google Scholar 

  24. Verma J, and Taiwade R V, J Manuf Proc 24 (2016) 1.

    Article  Google Scholar 

  25. Wang S, Ma Q, and Li Y, Mater Des 32 (2011) 831.

    Article  Google Scholar 

  26. Kordatos J D, Fourlaris G, and Papadimitriou G, Scr Mater 44 (2001) 401.

    Article  Google Scholar 

  27. Kim S T, Jang S H, Lee I S, and Park Y S, Corros Sci 53 (2011) 1939.

    Article  Google Scholar 

  28. Wu M, Liu F, Anderson N E, Li L, and Liu D, J Mater Eng Perform (2017) (https://doi.org/10.1007/s11665-017-2976-0).

  29. Bhattacharya A, and Singh P M, J Fail Anal Prev 7 (2007) 371.

    Article  Google Scholar 

  30. Unnikrishnan R, Idury K S N S, Ismail T P, Bhaduria A, Khatirkar R K, and Sapate S G, Mater Charact 93 (2014) 10.

    Article  Google Scholar 

  31. Standard Practice for Preparation of Metallographic Specimens. E3-95 ASTM, PA, USA (1995).

    Google Scholar 

  32. ASM Handbook: Metallographic and Microstructures, ASM International, Materials Park, OH (2004).

  33. Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Ferritic-Austenitic Stainless Steel Weld Metal, AWS A4.2M (2006) (ISO 8249:2000 MOD).

  34. Standard Test Method for Tensile Testing of Metallic Materials. E8-04, ASTM, PA, USA (2004).

  35. Stephenson N, Weld Met Fabr 55 (1987) 159.

    Google Scholar 

  36. Stephenson N, Weld Met Fabr 55 (1987) 235.

    Google Scholar 

  37. Kumar N, Kumar A, Gupta A, Gaikwad A D, and Khatirkar R K, Trans IIM (2017) (https://doi.org/10.1007/s12666-017-1167-x).

  38. Hsieh R I, Liou H Y, and Plan Y T, J Mater Eng Perform 10 (2001) 526.

    Article  Google Scholar 

  39. Liou H Y, Hsieh R I, and Tsai W T, Corros Sci 44 (2002) 2841.

    Article  Google Scholar 

  40. Yang Y, Yan B, Li J, and Wang J, Corros Sci 53 (2011) 3756.

    Article  Google Scholar 

  41. Moura V S, and Lima L D, Mater Charact 59 (2012) 1127.

    Article  Google Scholar 

  42. Rahmani M, Eghlimi A, and Shamanian M, J Mater Eng Perform 23 (2014) 3745.

    Article  Google Scholar 

  43. Eghlimi A, Shamanian M, and Raeissi K, J Mater Eng Perform 22 (2013) 3657.

    Article  Google Scholar 

  44. Tseng C M, Liou H Y, and Tsai W T, Mater Sci Eng A 344 (2003) 190.

    Article  Google Scholar 

  45. Rawers J, and Gruijicic M, Mater Sci Eng A 207 (1996) 188.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Director, VNIT Nagpur for providing necessary facilities and constant encouragement to publish this paper. The authors are also thankful to Mr. Ashvin Gaikwad, Weldwell Electrodes, Nagpur for providing the facilities for welding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kisni Khatirkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Kumar, A., Baskaran, T. et al. Effect of Heat Input on Microstructure and Corrosion Behavior of Duplex Stainless Steel Shielded Metal Arc Welds. Trans Indian Inst Met 71, 1595–1606 (2018). https://doi.org/10.1007/s12666-018-1294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1294-z

Keywords

Navigation