Skip to main content
Log in

Microstructure and Properties of Nb/Nb5Si3 Composites Strengthened with Multiwalled Carbon Nanotubes by SPS

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes (MWCNTs) were modified noncovalently with cetyltrimethylammonium bromide. The Nb/Nb5Si3 in situ composite material that was strengthened with MWCNTs was prepared by SPS. The effect of MWCNT content on the microstructure and properties of Nb/Nb5Si3 in situ composites was investigated. The results showed that the composites consisted of Nb, α-Nb5Si3 and β-Nb5Si3 phases. With the addition of over 2 wt% MWCNT, a new Nb4C3 phase was formed in the composites. The properties of the Nb/Nb5Si3 in situ composites were affected by MWCNT addition. The relative density, Vickers hardness and fracture toughness increased with increasing MWCNT addition. When the MWCNT addition was 2 wt%, the relative density and Vickers hardness reached a maximum and increased by ~ 1.4% and ~ 18%, respectively (relative to 0 wt% MWCNT addition). When the MWCNT content exceeded 2 wt%, the relative density and the Vickers hardness decreased. However, the fracture toughness of the Nb/Nb5Si3 composites with 3 wt% MWCNTs reached a maximum (an increase of ~ 68% relative to 0 wt% MWCNT addition). Scanning electron micrographs of the fractography showed brittle cleavage and partial intercrystalline composite fracture. The composite toughening mechanisms arose mainly because of MWCNT removal and bridging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bewlay B P, Jackson M R, Subramanian P R, and Zhao J C, Metall Mater Trans A 34 (2003) 2043.

    Article  Google Scholar 

  2. Tang Y, and Guo X P, Scr Mater 116 (2016) 16.

    Article  Google Scholar 

  3. Wang F, Luo L, Xu Y, Meng X, Wang L, Han B, Su Y, Guo J, and Fu H, Intermetallics 88 (2017) 6.

    Article  Google Scholar 

  4. Sun Z P, Guo J M, and Zhang C, Rare Metal Mater Eng 45 (2016) 1678.

    Article  Google Scholar 

  5. Li Z, and Tsakiropoulos P, Intermetallics 26 (2012) 18.

    Article  Google Scholar 

  6. Su L, Jia L, Yuan S, Zhou L, Zhang H, and Zhang H, Mater Sci Technol 31 (2014) 220.

    Article  Google Scholar 

  7. Maji P, Mitra R, Ray K K, Intermetallics 85 (2017) 34.

    Article  Google Scholar 

  8. Zhang S, and Guo X, Intermetallics 64 (2015) 51.

    Article  Google Scholar 

  9. Grammenos I, and Tsakiropoulos P, Intermetallics 19 (2011) 1612.

    Article  Google Scholar 

  10. Xiong B W, Cai C C, and Wang Z J, J Alloys Compd 583 (2014) 574.

    Article  Google Scholar 

  11. Guo Y, Jia L, Kong B, Zhang H, and Zhang H, Intermetallics 92 (2018) 1.

    Article  Google Scholar 

  12. Sha J, Hisatoshi H, Tatsuo T, Akira K, Hidetoshi U, and Shuji H, Mater Trans JIM 41 (2000) 1125.

    Article  Google Scholar 

  13. Kim W Y, Yeo I D, Ra T Y, Cho G S, and Kim M S, J Alloys Compd 364 (2004) 186.

    Article  Google Scholar 

  14. Kang Y, Qu S, Song J, Huang Q, and Han Y, Mater Sci Eng A 534 (2012) 323.

    Article  Google Scholar 

  15. Zhang S, and Guo X, Intermetallics 57 (2015) 83.

    Article  Google Scholar 

  16. Thandorn T, and Tsakiropoulos P, Intermetallics 18 (2010) 1033.

    Article  Google Scholar 

  17. Li Z F, and Tsakiropoulos P, Intermetallics 18 (2010) 1072.

    Article  Google Scholar 

  18. Tiwary C S, Kashyap S, and Chattopadhyay K, Mater Sci Eng A 560 (2013) 200.

    Article  Google Scholar 

  19. Vellios N, and Tsakiropoulos P, Intermetallics 18 (2010) 1729.

    Article  Google Scholar 

  20. Geng J, Tsakiropoulos P, Shao G, Intermetallics 15 (2007) 69.

    Article  Google Scholar 

  21. Kim W Y, Tanaka H, Kasama A, and Hanada S, Intermetallics 9 (2001) 827

    Article  Google Scholar 

  22. Kim W Y, Tanaka H, and Hanada S, Intermetallics 10 (2002) 625.

    Article  Google Scholar 

  23. Sha J, Hirai H, Ueno H, Tabaru T, Kitahara A, and Hanada S, Metal Mater Trans A 34 (2003) 2861

    Article  Google Scholar 

  24. Esparza N, Rangel V, Gutierrez A, Arellano B, and Varma S K, Mater High Temp 33 (2016) 105.

    Article  Google Scholar 

  25. Jia L N, Weng J F, Li Z, Hong Z, Su L F, and Zhang H, Mater Sci Eng A 623 (2015) 32.

    Article  Google Scholar 

  26. Li Z, and Tsakiropoulos P, J Alloys Compd 550 (2013) 553.

    Article  Google Scholar 

  27. Kashyap S, Tiwary C S, and Chattopadhyay K, Intermetallics 19 (2011) 1943.

    Article  Google Scholar 

  28. Knittel S, Mathieu S, and Vilasi M, Intermetallics 47 (2014) 36.

    Article  Google Scholar 

  29. Sun Z P, Guo X P, Tian X D, and Zhou L, Intermetallics 54 (2014) 143.

    Article  Google Scholar 

  30. Jagannatham M, Sankaran S, and Haridoss P, Mater Sci Eng A 638 (2015) 197.

    Article  Google Scholar 

  31. Feng X, Sui J H, Cai W, and Liu A L, Scr Mater 64 (2011) 824.

    Article  Google Scholar 

  32. Feng X, Sui J H, and Cai W, J Compos Mater 45 (2011) 1553.

    Article  Google Scholar 

  33. Lee J, Hwang J, Lee D, Ryu H J, and Hong S H, J Alloys Compd 617 (2014) 505.

    Article  Google Scholar 

  34. Kondoh K, Threrujirapapong T, Imai H, Umeda J, and Fugetsu B, Compos Sci Technol 69 (2009) 1077,

    Article  Google Scholar 

  35. Ye D L, and Hu J H, Handbook of Inorganic Thermodynamics, Metallurgical Industry Press, Beijing (2002).

    Google Scholar 

  36. Sekido N, Wei F G, Kimura Y, Miura S, and Mishima Y, Philos Mag Lett 86 (2006) 89.

    Article  Google Scholar 

  37. Khor K A, Cheng K H, Yu L G, and Boey F, Mater Sci Eng A 347 (2003) 300.

    Article  Google Scholar 

  38. Chen Z, and Yan Y W, J Wuhan Univ Technol (Mater Sci Ed) 22 (2007) 299.

    Article  Google Scholar 

  39. Wang X L, Wang G F, and Zhang K F, Mater Sci Eng A 527 (2010) 3253.

    Article  Google Scholar 

  40. Ameri S, Sadeghian Z, and Kazeminezhad I, Intermetallics 76 (2016) 41.

    Article  Google Scholar 

  41. Ma C L, Li J G, Tan Y, Tanaka R, and Hanada S, Mater Sci Eng A 384 (2004) 377.

    Article  Google Scholar 

  42. Bakshi S R, Lahiri D, and Agarwal A, Int Mater Rev 55 (2010) 41.

    Article  Google Scholar 

Download references

Acknowledgements

In this paper, the research was sponsored by the National Natural Science Foundation of China (Project No. 51271091) and the Nature Science Foundation of Jiangxi Province (Project No. 20161BAB206107) and the technology project of Jiangxi Province Education Department (Project No. GJJ12420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, W., Zeng, X. & Jia, H. Microstructure and Properties of Nb/Nb5Si3 Composites Strengthened with Multiwalled Carbon Nanotubes by SPS. Trans Indian Inst Met 72, 983–991 (2019). https://doi.org/10.1007/s12666-018-01559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-01559-y

Keywords

Navigation