Skip to main content
Log in

Processing and Evaluation of Mechanical Properties of Sugarcane Fiber Reinforced Natural Composites

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present work, the natural composites based on sugarcane bagasse fiber and/or coconut shell powder were processed using hand lay-up technique. The matrix selected was polyester. Three different types of composites were considered: polyester matrix + sugarcane fiber, polyester matrix + sugarcane fiber + metal mesh and polyester matrix + sugarcane fiber + coconut shell filler. The sugarcane fibers were used in three forms: (1) chemically treated by NaOH, (2) chemically treated by HCl, and (3) untreated condition. In total, 9 types of composites were developed and studied for tensile, flexural and impact properties. The fracture surface of the tensile and flexural test samples was examined with the aid of scanning electron microscope to understand the bonding characteristics and the mode of failure. The key-findings from the present work are: (1) the composites reinforced with the NaOH treated sugarcane fiber and the metal mesh show superior tensile and impact properties whereas the composites reinforced with the NaOH treated sugarcane fiber show the best flexural properties, (2) NaOH treatment of sugarcane fibres has a significant effect in improving the mechanical properties by surface modification of fibres through OH functional groups. In contrast, HCl treatment of sugarcane deteriorates the surface of the sugarcane by absorbing the electrons. The damaged surface results in weak bonding causing poor mechanical properties, (3) From the SEM analysis of the surface of the sugarcane fiber, it may be concluded that the surface condition of the sugarcane fibres decide the bonding with the matrix. The fiber pull-outs and porosities are less in the NaOH treated sugarcane reinforced composites. The fiber failure is the main mechanism of failure in the tensile test whereas the fiber debonding from the matrix is the main source of failure in the flexural test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pan Y, and Zhong Z, Mech Mater 85 (2015) 7.

    Article  Google Scholar 

  2. Andiç-Çakir Ö, Sarikanat M, Tüfekçi H B, Demirci C, and Erdoğan Ü H, Compos Part B 61 (2014) 49.

    Article  Google Scholar 

  3. Essabir H, Bensalah M O, Rodrigue D, Bouhfid R, and Qaiss A, Mech Mater 93 (2016) 134.

    Article  Google Scholar 

  4. Sahari J, and Sapuan S M, Rev Adv Mater Sci 30 (2011) 166.

    Google Scholar 

  5. Ratna Prasad A V, and Mohana Rao K, Mater Des 32 (2011) 4658.

    Article  Google Scholar 

  6. Väisänen T, Haapala A, Lappalainen R, and Tomppo L, Waste Manag 54 (2016) 62.

    Article  Google Scholar 

  7. Keck S, and Fulland M, Eng Fract Mech 167 (2016) 201.

    Article  Google Scholar 

  8. Alavudeen A, Rajini N, Karthikeyan S, Thiruchitrambalam M, and Venkateshwaren N, Mater Des 66 (2015) 246.

    Article  Google Scholar 

  9. Dhakal H N, Zhang Z Y, and. Richardson M O W, Compos Sci Technol 67 (2007) 1674.

    Article  Google Scholar 

  10. Granda LA, Espinach F X, Méndez J A, Tresserras J, Delgado-Aguilar M, and Mutjé P, Compos Part B 92 (2016) 332.

    Article  Google Scholar 

  11. Oksman K, Mathew A P, Långström R, Nyström B, and Joseph K, Compos Sci Technol 69 (2009) 1847.

    Article  Google Scholar 

  12. Ridzuan M J M, Abdul Majid M S, Afendi M, Aqmariah Kanafiah S N, Zahri J M, and Gibson A G, Mater Des 89 (2016) 839.

    Article  Google Scholar 

  13. Pickering K L, and Tan Minh Le, Compos Part B 85 (2016) 123.

    Article  Google Scholar 

  14. Berthet M-A, Gontard N, and Angellier-Coussy H, Compos Sci Technol 117 (2015) 386.

    Article  Google Scholar 

  15. El-Abbassi F E, Assarar M, Ayad R, Lamdouar N, Compos Struct 133 (2015) 451.

    Article  Google Scholar 

  16. Hassan S B, Oghenevweta J E, Aigbodion V S, Compos Part B 43 (2012) 2230.

    Article  Google Scholar 

  17. Milanese A C, Cioffi M O H, and Voorwald H J C, Compos Part B 43 (2012) 2843.

    Article  Google Scholar 

  18. Mulinari D R, Voorwald H J C, Cioffi M O H, Da Silva M L C P, da Cruz T G, Saron C, Compos Sci Technol 69 (2009) 214.

    Article  Google Scholar 

  19. Uthayakumar M, Manikandan V, Rajini N, and Jeyaraj P, Mater Des 64 (2014) 270.

    Article  Google Scholar 

  20. Haameem J A, Abdul Majid M S, Afendi M, Marzuki H F A, Ahmad Hilmi E, Fahmi I, Gibson A G, Compos Struct 144 (2016) 138.

    Article  Google Scholar 

  21. Manshor M R, Anuar H, Nur Aimi M N,  Ahmad Fitrie M I, Wan Nazri W B, Sapuan S M, El-Shekeil Y A, and Wahit M U, Mater Des 59 (2014) 279.

    Article  Google Scholar 

  22. Hajiha H, and Sain M, Biofiber Reinf Compos Mater (2015) 525.

  23. Anuar H, and Zuraida A, Compos Part B 42 (2011) 462.

    Article  Google Scholar 

  24. Andrzej Bledzki K, Abdullah Mamun A, and Jurgen Volk, Compos Sci Technol 70 (2010) 840.

    Article  Google Scholar 

  25. Wu Q, Chi K, Wu Y, and Lee S, Mater Des 60 (2014): 334.

    Article  Google Scholar 

  26. Brodowsky H, and Mäder E, Compos Sci Technol 72 (2012) 1160.

    Article  Google Scholar 

  27. Ramachandran M, Bansal S, and Raichurkar P, Perspect Sci 8 (2016) 313.

    Article  Google Scholar 

  28. Bozaci E, Sever K, Sarikanat M, Seki Y, Demir A, Ozdogan E, and Tavman I, Compos Part B 45 (2013) 565.

    Article  Google Scholar 

  29. Ramesh M, Palanikumar K, and Hemachandra Reddy K, Trans Indian Inst Met 69 (2016) 1851.

    Article  Google Scholar 

  30. Ramesh M, Palanikumar K, Hemachandra Reddy K, Compos Part B 48 (2013) 1.

    Article  Google Scholar 

  31. Hasselbruch H, Von Hehl A, and Zoch H-W, Mater Des 66 (2015) 429.

    Article  Google Scholar 

  32. Keerthika B, Umayavalli M, Jeyalalitha T, Krishnaveni N, Ecotoxicol Environ Safe 130 (2013) 1.

    Article  Google Scholar 

  33. Li X, Tabil L G, and Panigrahi S, J Polym Environ 15 (2007) 25.

    Article  Google Scholar 

  34. Vilay V, Mariatti M, Taib R M, and Todo M, Compos Sci Technol 68 (2008) 631.

    Article  Google Scholar 

  35. Venkata Krishna K, and Kanny K, Compos Part B Eng 104 (2016) 111.

    Article  Google Scholar 

  36. Rodrigues E F, Maia T F, Mulinari D R, Procedia Eng 10 (2011) 2348.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Gokul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokul, K., Prabhu, T.R. & Rajasekaran, T. Processing and Evaluation of Mechanical Properties of Sugarcane Fiber Reinforced Natural Composites. Trans Indian Inst Met 70, 2537–2546 (2017). https://doi.org/10.1007/s12666-017-1116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1116-8

Keywords

Navigation