Skip to main content
Log in

Physical, Mechanical and Morphological Properties of Sugar Palm Fiber Reinforced Polylactic Acid Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This research was performed to evaluate the physical, mechanical and morphological properties of sugar palm fiber (SPF) reinforced polylactic acid (PLA) composites. PLA is a thermoplastic biodegradable polymer which is mostly used as a matrix material in the composite. Sugar palm fiber and PLA were mixed to form composite compounds using twin-screw extruder. These biocomposites of various sugar palm fiber loads (0, 10, 20, 30, and 40 wt. %) were prepared by using compression moulding. The effect of the loading of sugar palm fibers on the physical properties of composites (density, voids, and water absorption analysis), mechanical (tensile, flexural, and impact analysis) and morphology was studied. The determination of water absorption at different fiber loadings showed that the percentage of water absorption increased as the loading of fibers increased. The 30 % SPF loading composite displays optimum values for flexural and tensile strength which are 26.65 MPa and 13.70 MPa, respectively. Morphological studies by scanning electron microscopy revealed homogeneous fiber and matrix distribution also at 30 % loading of SPF with excellent adhesion, which plays an important role in enhancing the mechanical properties of composites. SEM analyzes show strong dispersion of SPF into PLA matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Oksman, M. Skrifvars, and J. F. Selin, Compos. Sci. Technol., 63, 1317 (2003).

    Article  CAS  Google Scholar 

  2. R. A. Ilyas, S. M. Sapuan, M. L. Sanyang, M. R. Ishak, and E. S. Zainudin, Curr. Anal. Chem., 14, 203 (2018).

    Article  CAS  Google Scholar 

  3. R. A. Ilyas and S. M. Sapuan, Curr. Anal. Chem., 16, 500 (2020).

    Article  CAS  Google Scholar 

  4. R. A. Ilyas and S. M. Sapuan, Curr. Org. Synth., 16, 1068 (2020).

    Article  Google Scholar 

  5. J. Bharanichandar, Natural Fiber Reinforced Polymer Composites for Automobile Accessories, 9, 494 (2014).

    Google Scholar 

  6. A. S. Singhaa and V. K. Thakura, BioResources, 3, 1173 (2008).

    Google Scholar 

  7. M. Chalid and I. Prabowo, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 9, 342 (2015).

    Google Scholar 

  8. A. Atiqah, M. Jawaid, S. M. Sapuan, and M. R. Ishak, BioResources, 13, 1174 (2018).

    CAS  Google Scholar 

  9. R. A. Ilyas, S. M. Sapuan, M. R. Ishak, E. S. Zainudin, and M. S. N. Atikah, Biofibers, Biopolymers, and Biocomposites, 1, 189 (2018).

    Article  Google Scholar 

  10. M. R. M. Huzaifah, S. M. Sapuan, Z. Leman, M. R. Ishak, and M. A. Maleque, Multidiscip. Model. Mater. Struct., 13, 678 (2017).

    Article  Google Scholar 

  11. S. M. Sapuan, R. A. Ilyas, M. R. Ishak, Z. Leman, and M. S. N. Atikah, Biofibers, Biopolymers, and Biocomposites, 1, 245 (2018).

    Article  Google Scholar 

  12. A. M. Radzi, S. M. Sapuan, M. Jawaid, and M. R. Mansor, Fiber. Polym., 20, 847 (2019).

    Article  CAS  Google Scholar 

  13. B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak, Cellulose, 23, 2905 (2016).

    Article  CAS  Google Scholar 

  14. H. M. Akil, M. F. Omar, A. M. Mazuki, S. Safiee, and Z. A. M. Ishak, Mater. Des., 32, 8 (2011).

    Article  Google Scholar 

  15. R. A. Ilyas, S. M. Sapuan, M. Atikah, M. Asyraf, S. A. Rafiqah, H. Aisyah, N. M. Nurazzi, and M. Norrrahim, Text. Res. J., 91, 1 (2020).

    Google Scholar 

  16. R. A. Ilyas, S. M. Sapuan, M. R. Ishak, and E. S. Zainudin, Int. J. Biol. Macromol., 123, 379 (2019).

    Article  PubMed  CAS  Google Scholar 

  17. R. A. Ilyas, S. M. Sapuan, and M. R. Ishak, Carbohydr. Polym., 181, 1038 (2018).

    Article  PubMed  CAS  Google Scholar 

  18. R. A. Ilyas, S. M. Sapuan, R. Ibrahim, H. Abral, M. R. Ishak, E. S. Zainudin, M. S. N. Atikah, N. M. Nurazzi, A. Atiqah, and M. N. M Ansari, J. Mater. Res. Technol., 8, 4819 (2019).

    Article  CAS  Google Scholar 

  19. J. Sahari, S. M. Sapuan, E. S. Zainudin, and M. A. Maleque, J. Biobased Mater. Bioenergy, 7, 90 (2013).

    Article  CAS  Google Scholar 

  20. Z. Leman, S. M. Sapuan, A. M. Saifol, M. A. Maleque, and M. M. H. M. Ahmad, Mater. Des., 29, 1666 (2008).

    Article  CAS  Google Scholar 

  21. B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak, J. Nat. Fibers, 14, 645 (2017).

    Article  CAS  Google Scholar 

  22. A. Nazrin, S. M. Sapuan, M. Y. M. Zuhri, R. A. Ilyas, R. Syafiq, and S. F. K. Sherwani, Front. Chem., 8, 213 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. F. M. A. Oqla and S. M. Sapuan, “Advanced Processing, Properties, and Applications of Starch and Other Biobased Polymers”, pp.111–138, Elsevier, UK, 2020.

    Google Scholar 

  24. N. A. Ibrahim, W. Md Zin Wan Yunus, M. Othman, K. Abdan, and K. A. Hadithon, J. Reinf. Plast. Compos., 29, 1099 (2010).

    Article  CAS  Google Scholar 

  25. M. S. Huda, L. T. Drzal, M. Misra, and A. K. Mohanty, J. Appl. Polym. Sci., 102, 4856 (2006).

    Article  CAS  Google Scholar 

  26. I. S. M. A. Tawakkal, R. A. Talib, K. Abdan, and C. N. Ling, BioResources, 7, 1643 (2012).

    Article  Google Scholar 

  27. F. Shukor, A. Hassan, M. Hasan, M. S. Islam, and M. Mokhtar, Polym.-Plast. Technol. Eng., 53, 760 (2014).

    Article  CAS  Google Scholar 

  28. X. Zhao, H. Hu, X. Wang, X. Yu, W. Zhou, and S. Peng, RSC Adv., 10, 13316 (2020).

    Article  CAS  Google Scholar 

  29. N. Eselini, S. Tirkes, A. O. Akar, and U. Tayfun, J. Elastomers Plast., 52, 701 (2020).

    Article  CAS  Google Scholar 

  30. ASTM D792-13, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA, 2013.

    Google Scholar 

  31. ASTM D570-14, Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, PA, 2014.

    Google Scholar 

  32. E. H. Agung and M. H. M. Hamdan, NASPA J., 42, 1 (2005).

    Google Scholar 

  33. ASTM D638-10, Standard Test Method for Tensile Properties of Plastic, ASTM International, West Conshohocken, PA, 2010.

    Google Scholar 

  34. ASTM D790-03, Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, 2003.

    Google Scholar 

  35. ASTM Standard D256-15, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, ASTM International, West Conshohocken, PA, 2015.

    Google Scholar 

  36. A. Atiqah, M. Jawaid, S. M. Sapuan, and M. R. Ishak, J. Renew. Mater., 6, 477 (2018).

    CAS  Google Scholar 

  37. B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak, J. Nat. Fibers, 14, 645 (2017).

    Article  CAS  Google Scholar 

  38. U. D. Idris, V. S. Aigbodion, I. J. Abubakar, and C. I. Nwoye, J. King Saud Univ. — Eng. Sci., 27, 92 (2015).

    Article  Google Scholar 

  39. B. Shivamurthy, K. Murthy, P. C. Joseph, K. Rishi, and K. U. Bhat, J. Mater. Cycles, 17, 56 (2015).

    Google Scholar 

  40. C. M. Ruzaidi, H. Kamarudin, J. B. Shamsul, and M. A. Abdullah, Adv. Mater. Res., 341, 26 (2012).

    Google Scholar 

  41. A. Danladi and J. Shu’aib, Am. J. Mater. Sci., 3, 139 (2014)

    Google Scholar 

  42. M. H. Zamri, H. M. Akil, A. A. Bakar, Z. A. M. Ishak, and L. W. Cheng, J. Compos. Mater., 46, 51 (2012).

    Article  CAS  Google Scholar 

  43. A. Atiqah, M. Jawaid, M. R. Ishak, and S. M. Sapuan, Procedia Eng., 184, 581 (2017).

    Article  CAS  Google Scholar 

  44. S. Ochi, Mech. Mater., 40, 446 (2008).

    Article  Google Scholar 

  45. A. Atiqah, M. Jawaid, S. M. Sapuan, and M. R. Ishak, IOP Conf. Ser. Mater. Sci. Eng., 368, 012047 (2018).

    Article  Google Scholar 

  46. S. Serizawa, K. Inoue, and M. Iji, J. Appl. Polym. Sci., 100, 618 (2006).

    Article  CAS  Google Scholar 

  47. M. Shibata, K. Ozawa, N. Teramoto, R. Yosomiya, and H. Takeishi, Macromol. Mater. Eng., 288, 35 (2003).

    Article  CAS  Google Scholar 

  48. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Compos. Sci. Technol., 68, 424 (2008).

    Article  CAS  Google Scholar 

  49. M. S. Huda, A. K. Mohanty, L. T. Drzal, E. Schut, and M. Misra, J. Mater. Sci., 40, 4221 (2005).

    Article  CAS  Google Scholar 

  50. R. Sukmawan, H. Takagi, and A. N. Nakagaito, Compos. Part B, 84, 9 (2016).

    Article  CAS  Google Scholar 

  51. B. Bax and J. Müssig, Compos. Sci. Technol., 68, 1601 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledged to Universiti Putra Malaysia (UPM) for funding this research through Geran Putra Berimpak (GPB), UPM/800-3/3/1/GPB/2019/9679800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sapuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherwani, S.F.K., Sapuan, S.M., Leman, Z. et al. Physical, Mechanical and Morphological Properties of Sugar Palm Fiber Reinforced Polylactic Acid Composites. Fibers Polym 22, 3095–3105 (2021). https://doi.org/10.1007/s12221-021-0407-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0407-1

Keywords

Navigation