Skip to main content
Log in

Investigation of Bonding Behavior of AA1050/AA5083 Bimetallic Laminates by Roll Bonding Technique

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, 1-mm AA1050/AA5083 bimetallic laminates were produced using roll bonding (RB) process. The RB process was carried out with thickness reduction ratios of 25, 50 and 75%, separately. Finite element simulation was used to model the deformation of bimetallic laminates for various experimental conditions. Particular attention was focused on the bonding of the interface between AA1050 and AA5083 layers in the simulation. The optimization of thickness reduction ratios was obtained for improvement of the bond strength of bimetallic laminates during RB process. During the simulation, the mean equivalent strain at the interface zone between the layers was found to reach the maximum value with a high quality bond for the sample produced with 75% of thickness reduction. Moreover, the fracture surface of samples around the interface of laminates after the tensile test was studied to investigate the bonding quality by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Evancho J W, and Kaufman J G, Aluminum 53 (1977) 609.

    Google Scholar 

  2. Eizadjou M, Danesh Manesh H, and Janghorban K, Mater Des 29 (2008) 909.

    Article  Google Scholar 

  3. Chang H, Zheng M Y, Gan W M, Wu K, Maawad K, and Brokmeier H G, Scr Mater 61 (2009) 717.

    Article  Google Scholar 

  4. Chen M C, Hsieh H C, and Wu W, J Alloys Compd 416 (2006) 169.

    Article  Google Scholar 

  5. Wu K, Chang H, Maawad E, Gan W M, Brokmeier H G, and Zheng M Y, Mater Sci Eng A 527 (2009) 3073.

    Article  Google Scholar 

  6. Liu H S, Zhang B, and Zhang G P, Scr Mater 64 (2011) 13.

    Article  Google Scholar 

  7. Kavarana F H, Ravichandran K S, and Sahay S S, Scr Mater 42 (2000) 947.

    Article  Google Scholar 

  8. Ohsaki S, Kato S, Tsuji N, Ohkubo T, and Hono K, Acta Mater 55 (2007) 2885.

    Article  Google Scholar 

  9. Dehsorkhi R N, Qods F, and Tajally M, Mater Sci Eng A 530 (2011) 63.

    Article  Google Scholar 

  10. Mozaffari A, Danesh Manesh H, and Janghorban K, J Alloys Compd 489 (2010) 103.

    Article  Google Scholar 

  11. Williams J C, and Starke E A, Acta Mater 51 (2003) 5775.

    Article  Google Scholar 

  12. Tang C, Liu Z, Zhou A D, and Wu S, Strength Mater 47 (2015) 150.

    Article  Google Scholar 

  13. Wei K X, Wei W, Du Q B, and Hu J, Mater Sci Eng A 525 (2009) 55.

    Article  Google Scholar 

  14. Jamaati R, and Toroghinejad M R, Mater Sci Eng A 527 (2010) 4146.

    Article  Google Scholar 

  15. Quadir M Z, Al-Buhamad O, Bassman L, and Ferry M, Acta Mater 55 (2007) 5438.

    Article  Google Scholar 

  16. Hausöl T, Höppel H W, and Göken M, J Mater Sci 45 (2010) 4733.

    Article  Google Scholar 

  17. Roy S, Nataraj B R, Suwas S, Kumar S, and Chattopadhyay K, Mater 36 (2012) 529.

    Article  Google Scholar 

  18. Su L, Lu C, Tieu A K, Deng G, and Sun X, Mater Sci Eng A 559 (2013) 345.

    Article  Google Scholar 

  19. Murr L E, Trillo E A, Pappu S, and Kennedy C, J Mater Sci 37 (2002) 3337.

    Article  Google Scholar 

  20. Saito Y, Utsunomiya H, Tsuji N, and Sakai T, Acta Mater 47 (1999) 579.

    Article  Google Scholar 

  21. Skrotzki W, Scheerbaum N, Oertel C-G, Brokmeier H-G, Suwas S, and Tóth L S, Acta Mater 55 (2007) 2211.

    Article  Google Scholar 

  22. Richert J, and Richert M, Aluminium 62 (1986) 604.

    Google Scholar 

  23. Vaidyanath L, Nicholas M, and Milner D, Br Weld J 6 (1959) 13.

    Google Scholar 

  24. Saito Y, Tsuji N, Utsunomiya H, Sakai T, and Hong R G, Scr Mater 39 (1998) 1221.

    Article  Google Scholar 

  25. Jamaati R, and Toroghinejad M R, Mater Sci Eng A 527 (2010) 4858.

    Article  Google Scholar 

  26. Yu H, Tieu A K, Lu C, and Godbole A, Metall Mater Trans A 45 (2014) 4038.

    Article  Google Scholar 

  27. Govindaraj N V, Lauvdal S, and Holmedal B, J Mater Process Technol 213 (2013) 955.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the IUST manufacturing technology research center for the provision of experimental set up and research facilities used in this work. Also, Mr. P. Farhadipour is greatly appreciated for his help in some experimental parts in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sedighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari Vini, M., Sedighi, M. & Mondali, M. Investigation of Bonding Behavior of AA1050/AA5083 Bimetallic Laminates by Roll Bonding Technique. Trans Indian Inst Met 71, 2089–2094 (2018). https://doi.org/10.1007/s12666-017-1058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1058-1

Keywords

Navigation