Skip to main content
Log in

Effect of Laser Beam Welding on Microstructure and Mechanical Properties of Commercially Pure Titanium

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Laser beam welding of commercially pure titanium sheets were carried out at different operating conditions. Laser powers of 2.0 and 2.5 kW, beam diameters of 0.18 and 0.36 mm and welding speeds of 4–8 m/min were used. The microstructure and mechanical properties of the welded samples were investigated in the present study. It was observed that the grain size of the welded samples increased with increasing laser power while it decreased with increasing welding speed and beam diameter. The sample welded at 2.5 kW laser power with 4 m/min welding speed and 0.36 mm beam diameter had comparable tensile properties with the base metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boyer R R, Mater Sci Eng A 213 (1996) 103.

    Article  Google Scholar 

  2. Bhowmik S, Bonin H W, Bui V T, and Weir R D, Int J Adhes Adhes 26 (2006) 400.

    Article  Google Scholar 

  3. Yamada M, Mater Sci Eng A 213(1996) 8.

    Article  Google Scholar 

  4. Duraiselvam M, Valarmathi A, Shariff S M, and Padmanabham G, Wear 309 (2014) 269.

    Article  Google Scholar 

  5. Choubey A, Basu B, and Balasubramaniam R, Trends Biomater Artif Organs 18 (2005) 64.

    Google Scholar 

  6. Gordin D M, Ion R, Vasilescu C, Drob S I, Cimpean A, and Gloriant T, Mater Sci Eng C 44 (2014) 362.

    Article  Google Scholar 

  7. Gurrappa I, Mater Char 51 (2003) 131.

    Article  Google Scholar 

  8. Shoesmith D W, and Noël J J, in Richardson T J A (ed) Shreir’s Corrosion, Elsevier, Amsterdam (2010) p 2042.

    Chapter  Google Scholar 

  9. Abdallah Z, Whittaker M T, and Bache M R, Intermetallics 38 (2013) 55.

    Article  Google Scholar 

  10. Schutz R W, and Watkins H B, Mater Sci Eng A 243 (1998) 305.

    Article  Google Scholar 

  11. Yunlian Q, Ju D, Quan H, and Liying Z, Mater Sci Eng A 280 (2000) 177.

    Article  Google Scholar 

  12. Lathabai S, Jarvis B L, and Barton K J, Mater Sci Eng A 299 (2001) 81.

    Article  Google Scholar 

  13. Gao X L, Zhang L, Liu J, and Zhang J, Mater Sci Eng A 559 (2013) 14.

    Article  Google Scholar 

  14. Balasubramanian T S, Balakrishnan M, Balasubramanian V, and Muthu Manickam M A, Trans Nonferrous Met Soc China 21 (2011) 1253.

    Article  Google Scholar 

  15. Zhang J X, Xue Y, and Gong S L, Sci Tech Weld Join 10 (2005) 643.

    Article  Google Scholar 

  16. Tzeng Y F, Int J Adv Manuf Tech 16 (2000) 10.

    Article  Google Scholar 

  17. Zhao S, Yub G, Heb X, and Hub Y, J Mater Process Tech 212 (2012) 1520.

    Article  Google Scholar 

  18. Zhou W, and Chew K G, Mater Sci Eng A 347 (2003) 180.

    Article  Google Scholar 

  19. Akman E, Demir A, Canel T, and Sınmazcelik T, J Mater Process Tech 209 (2009) 3705.

    Article  Google Scholar 

  20. Choi B H, and Choi B K, J Mater Process Tech 201 (2008) 526.

    Article  Google Scholar 

  21. Manonmani K, Murugan N, and Buvanasekaran G, Int J Adv Manuf Tech 32 (2007) 1125.

    Article  Google Scholar 

  22. Padmanaban G, and Balasubramanian V, Trans Nonferrous Met Soc China 21 (2011) 1917.

    Article  Google Scholar 

  23. Benyounis K Y, Olabi A G, and Hashmi M S J, J Mater Process Tech 164-165 (2005) 978.

    Article  Google Scholar 

  24. El-Batahgy A, Mater Lett 32 (1997) 155.

    Article  Google Scholar 

  25. Squillace A, Prisco U, Ciliberto S, and Astarita A, J Mater Process Tech 212 (2012) 427.

    Article  Google Scholar 

  26. Fabbro R, J ApplPhy 43 (2012) 445.

    Google Scholar 

  27. Caiazzo F, Curcio F, Daurelio G, Memola F, and Minutolo C, J Mater Process Tech 149 (2004) 546.

    Article  Google Scholar 

  28. Shen J, Wen L, Li Y, and Min D, Mater Sci Eng A 578 (2013) 303.

    Article  Google Scholar 

  29. Quan Y J, Chen Z H, Gong X S, and Yu Z H, Mater Sci Eng A 496 (2008) 45.

    Article  Google Scholar 

  30. Lisiecki A, Arch Mater Sci Engg 58 (2012) 209.

    Google Scholar 

  31. Badkar D S, Pandey K S, and Buvanashekaran G, Int J Mater Sci 4 (2009) 299.

    Google Scholar 

  32. Dawes C T, Laser Welding: A Practical Guide, Abington publishing, Cambridge, 1992.

    Book  Google Scholar 

  33. Verlinden B, Driver J, Samajdar I, and Doherty R D, Thermo-Mechanical Processing of Metallic Materials, Pergamon, Oxford (2007), p 157.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. I. Samajdar to conduct EBSD measurements at National Facility on OIM & Texture, IIT Bombay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.K., Bishoyi, B., Mohanty, U.K. et al. Effect of Laser Beam Welding on Microstructure and Mechanical Properties of Commercially Pure Titanium. Trans Indian Inst Met 70, 1817–1825 (2017). https://doi.org/10.1007/s12666-016-0976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0976-7

Keywords

Navigation