Skip to main content
Log in

Properties of Zinc alloy electrodeposits produced from acid and alkaline electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Zinc–cobalt (Zn–Co) and zinc–nickel (Zn–Ni) alloy electrodeposits each prepared from acid and alkaline formulations were compared for their properties. Compared to alkaline baths, acid baths offer higher metal percent of the alloying element and higher current efficiency. In alkaline baths, the variation of metal percent in deposit with current density is less significant, but that of current efficiency with current density is more. Electrolyte pH does not change significantly in alkaline solutions compared to acid solutions. X-ray diffraction evaluation of Zn–Co deposits from both electrolytes indicated their presence in the η-phase, while Zn–Ni shows pure γ-phase for deposits obtained from alkaline solutions and the existence of γ-phase with traces of η-phase of zinc for deposits obtained from the acid electrolytes. Scanning electron microscope examination shows finer grain structure for deposits obtained from alkaline solutions, and atomic force microscope studies confirm their nanostructure with reduced surface roughness. Deposits obtained from the alkaline baths exhibited higher corrosion resistance probably due to their nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Carpenter EOS, Farr JPG (1998) Trans Inst Met Finish 76:135

    CAS  Google Scholar 

  2. Tsuru T, Kobayshi S, Akiyama T, Fukushima H, Gogia SK, Kammel RJ (1997) J Appl Electrochem 27:209

    Article  CAS  Google Scholar 

  3. Brenner A (1963) Electrodeposition of alloys—principles and practice, vol 1. Academic, New York

    Google Scholar 

  4. Short NR, Dennis JK, Zhou S (1996) Surf Coat Technol 79:218

    Article  CAS  Google Scholar 

  5. Gabe DR, Green WA (1998) Surf Coat Technol 105:195

    Article  CAS  Google Scholar 

  6. Kalantary MR (1994) Plat Surf Finish 81:80

    CAS  Google Scholar 

  7. Wilcox GD, Gabe DR (1994) Proceedings of Asian-Pacific Interfinish, Melbourne-2, Australian IMF, 50.1

  8. Crotty D, Griffin R (1997) Plat Surf Finish 84:57

    CAS  Google Scholar 

  9. Short NR, Dennis JK (1997) Trans Inst Met Finish 75:47

    CAS  Google Scholar 

  10. Roper ME, O’ Grady J (1996) Trans Inst Met Finish 74:3

    CAS  Google Scholar 

  11. Verberne WMJC (1986) Trans Inst Met Finish 64:30

    CAS  Google Scholar 

  12. Tu ZM, Yang ZL, An MZ, Li WL, Zhang JS (1999) Trans Inst Met Finish 77:246

    CAS  Google Scholar 

  13. Loar GW (1991) Plat Surf Finish 78:74

    CAS  Google Scholar 

  14. Fratesi R, Roventi G, Giuliani G, Tomachuck CR (1997) J Appl Electrochem 27:1088

    Article  CAS  Google Scholar 

  15. Gomez E, Valles E (1997) J Electroanal Chem 421:157

    Article  CAS  Google Scholar 

  16. Kalantary MR, Wilcox GD, Gabe DR (1995) Electrochim Acta 40:1609

    Article  CAS  Google Scholar 

  17. Nabil Z (1999) Product Finish 6:53

    Google Scholar 

  18. Baldwin KR, Smith CJE (1996) Trans Inst Metal Finish 74:202

    CAS  Google Scholar 

  19. Rajendran S, Bharathi S, Krishna C, Vasudevan T (1997) Plat Surf Finish 84:53

    CAS  Google Scholar 

  20. Carpenter DEOS, Farr JPG (2005) Proceedings of the 9th International Symposium on Advanced Materials. Kahuta Research Laboratory, Lahore, Abstracts 101

  21. Yan H, Downes J, Boden PJ, Harris SJ (1996) J Electrochem Soc 143:1577

    Article  CAS  Google Scholar 

  22. Carpenter DEOS, Carpenter SD, Farr JPG (2000) Trans Inst Metal Finish 78:152

    CAS  Google Scholar 

  23. Wilcox GD, Mitchell PJ (1987) Trans Inst Metal Finish 65:75

    Google Scholar 

  24. Gircine O, Ramanauskas P, Castro P, Bertolo-Perez P (2001) Trans Inst Metal Finish 79:199

    Google Scholar 

  25. Roland P, Gernot S (1996) Trans Inst Metal Finish 74:158

    Google Scholar 

  26. Pech-Canul MA, Ramanauskas R, Maldonado L (1997) Electrochim Acta 42:255

    Article  CAS  Google Scholar 

  27. Tu ZM, Zhang JS, Li WL, Yang ZL, An MZ (1995) Trans Inst Metal Finish 73:48

    CAS  Google Scholar 

  28. Michael M (1996) PhD thesis, Madurai Kamaraj University, Tamil Nadu, India

  29. Pushpavanam M, Natarajan SR, Balakrishnan K, Sharma LR (1991) J Appl Electrochem 19:642

    Article  Google Scholar 

  30. Pushpavanam M, Raman V, Jayakrishnan S, Shenoy BA (1983) Metal Finish 81:85

    Google Scholar 

  31. Pushpavanam M, Balakrishnan K (1995) J Appl Electrochem 25:283

    Google Scholar 

  32. Pushpavanam M, Balakrishnan K (1996) J Appl Electrochem 26:1065

    CAS  Google Scholar 

  33. Pushpavanam M, Balakrishnan K (1996) Trans Inst Metal Finish 74:33

    CAS  Google Scholar 

  34. Siluvai MM, Pushpavanam M, Balakrishnan K (1995) Br Corros J 30:317

    Google Scholar 

  35. Siluvai MM, Pushpavanam M (2004) Trans Inst Metal Finish 82:57

    Google Scholar 

  36. Shanmugasigamani, Pushpavanam M (2006) Trans Inst Metal Finish 84:326

    Article  Google Scholar 

  37. Shanmugasigamani, Pushpavanam M (2008) Trans Inst Metal Finish 86:122

    Article  CAS  Google Scholar 

  38. Dahms H, Croll J (1965) J Electrochem Soc 112:771

    Article  CAS  Google Scholar 

  39. Shanmugasigamani, Pushpavanam M (2005) J Appl Electrochem 36:315

    Article  Google Scholar 

  40. Beltowska-Lehman E, Ozga P, Swiatek Z, Lupi C (2002) Cryst Eng 5:335

    Article  CAS  Google Scholar 

  41. Gavrila M, Millet JP, Mazille H, Marchandise D, Cuntz JM (2000) Surf Coat Technol 123:164

    Article  CAS  Google Scholar 

  42. Muller C, Sarret M, Benballa M (2002) J Electroanal Chem 519:85

    Article  CAS  Google Scholar 

  43. Ramanauskas R, Gudaviciute L, Kalinicenko A, Juskenas R (2005) J Solid State Electrochem 9:900

    Article  CAS  Google Scholar 

  44. Lee HY, Kim SG (2000) Surf Coat Technol 135:69

    Article  CAS  Google Scholar 

  45. Hall DE (1983) Plat Surf Finish 70:59

    CAS  Google Scholar 

  46. Ramanauskas R (1999) Appl Surf Sci 153:53

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to express their sincere thanks to the Director, CECRI for the encouragement given and permission to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malathy Pushpavanam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

M. S., C., Srinivasan, S. & Pushpavanam, M. Properties of Zinc alloy electrodeposits produced from acid and alkaline electrolytes. J Solid State Electrochem 13, 781–789 (2009). https://doi.org/10.1007/s10008-008-0607-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0607-2

Keywords

Navigation