Skip to main content
Log in

Growth Kinetics of the Fe2B Coating on AISI H13 Steel

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A kinetic model was suggested to study the growth kinetics of Fe2B layers on AISI H13 steel via the pack-boriding method in the temperature range of 1,123–1,273 K. This model was based of the principle of mass conservation at the (Fe2B/substrate) interface where the boride incubation time was independent of the boriding temperature. The model was also validated experimentally by comparing the experimental Fe2B layers thicknesses with the predicted values at 1,173 K during 7 h, 1,223 K during 5 h, 1,253 K during 2 h and 1,273 K for 3 h. The Fe2B layers grown on AISI H13 steel were characterized by use of the following experimental techniques: optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction analysis. In addition, a contour diagram describing the evolution of Fe2B layers as a function of the boriding parameters (time and temperature) was proposed. Finally, the boron activation energy for AISI H13 steel was estimated as 233 kJ mol−1 on the basis of our experimental results. This value of energy was compared with the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

v:

Boride layer thickness (m)

t v :

Effective growth time of the Fe2B layer (s)

t :

Treatment time (s)

\( t_{0}^{{{\text{Fe}}_{ 2} {\text{B}}}} \) :

Boride incubation time (s)

\( Q_{{{\text{Fe}}_{ 2} {\text{B}}}} \) :

Activation energy of the system (J mol−1)

\( C_{\text{up}}^{{{\text{Fe}}_{ 2} {\text{B}}}} \) :

Upper limit of boron content in Fe2B (=60 × 103 mol m−3)

\( C_{\text{low}}^{{{\text{Fe}}_{ 2} {\text{B}}}} \) :

Lower limit of boron content in Fe2B (=59.8 × 103 mol m−3)

\( C_{\text{ads}}^{\text{B}} \) :

Adsorbed boron concentration in the boride layer (mol m−3)

\( a_{1} = C_{\text{up}}^{{{\text{Fe}}_{ 2} {\text{B}}}} - C_{\text{low}}^{{{\text{Fe}}_{ 2} {\text{B}}}} \) :

Homogeneity range of the Fe2B layer (mol m−3)

\( a_{2} = C_{\text{low}}^{{{\text{Fe}}_{ 2} {\text{B}}}} - C_{0} \) :

Miscibility gap (mol m−3)

C 0 :

Terminal solubility of the interstitial solute (≈0 mol m−3)

\( C_{{{\text{Fe}}_{ 2} {\text{B}}}} [x{\kern 1pt} (t)] \) :

Boron concentration profile in the Fe2B layer (mol m−3)

\( erf\left( {x/2\sqrt {D_{{Fe_{2} B}} t} } \right) \) :

Error function (it has no physical dimensions)

v0 :

Initial Fe2B layer (m)

ɛ :

Normalized growth parameter for the (Fe2B/substrate) interface (it has no physical dimension)

\( D_{{{\text{Fe}}_{ 2} {\text{B}}}} \) :

Diffusion coefficient of boron in the Fe2B phase (m2 s−1 )

J i [x(t)], (with i = Fe2B and Fe):

Fluxes of boron atoms in the (Fe2B/substrate) interface boundary (mol m−2 s−1)

References

  1. Sinha A K, J Heat Treat 4 (1991) 437.

    Google Scholar 

  2. Singhal S C, Thin Solid Films 45 (1977) 321.

    Article  Google Scholar 

  3. Meric C, Sahin S, and Yilmaz S S, Mater Res Bull 35 (2000) 2165.

    Article  Google Scholar 

  4. Pertek A, and Kulka M, Appl Surf Sci 202 (2002) 252.

    Article  Google Scholar 

  5. Vipin J, and Sundararajan G, Surf Coat Technol 149 (2002) 21.

    Article  Google Scholar 

  6. Keddam M, Kulka M, Makuch N, Pertek A, Małdziński L, Appl Surf Sci 298 (2014) 155.

    Article  Google Scholar 

  7. Kukharev D S, Fizenko S P, and Shabunya S I, J Eng Phys Thermophys 69 (1996) 187.

    Article  Google Scholar 

  8. Campos I, Oseguera J, Figueroa U, Garcia J A, Bautista O, and Keleminis G, Mater Sci Eng A 352 (2003) 261.

    Article  Google Scholar 

  9. Keddam M, Appl Surf Sci 236 (2004) 451.

    Article  Google Scholar 

  10. Campos-Silva I, Ortiz-Domínguez M, Villavelazquez C, Escobar R, and López N, Defect Diffus Forum 272 (2007) 79.

    Google Scholar 

  11. Campos-Silva I, López-Perrusquia N, Ortiz-Domínguez M, Figueroa-López U, Gómez-Vargas O A, Meneses-Amador A, and Rodríguez-Castro G, Kovove Mater 47 (2009)75.

    Google Scholar 

  12. Campos-Silva I, Ortiz-Domínguez M, Cimenoglu H, Escobar-Galindo R, Keddam M, Elías-Espinosa M, and López-Perrusquia N, Surf Eng 27 (2011) 189.

    Article  Google Scholar 

  13. Ramdan R D, Takaki T, and Tomita Y, Mater Trans 49 (2008) 2625.

    Article  Google Scholar 

  14. Keddam M, Ortiz-Domínguez M, Campos-Silva I, and Martinez-Trinídad J, Appl Surf Sci 256 (2010) 3128.

    Article  Google Scholar 

  15. Ortiz-Domínguez M, Hernandez-Sanchez E, Martinez-Trinídad J, Keddam M, and Campos-Silva I, Kovove Mater 48 (2010) 1.

    Google Scholar 

  16. Keddam M, and Chegroune R, Appl Surf Sci 256 (2010) 5025.

    Article  Google Scholar 

  17. Nait Abdellah Z, Keddam M, Chegroune R, Bouarour B, Haddour L, and Elias A, Matér Tech 100 (2012) 581.

    Article  Google Scholar 

  18. Nait Abdellah Z, Keddam M, and Elias A, Int J Mater Res 104 (2013) 260.

    Article  Google Scholar 

  19. Ortiz-Domínguez M, Keddam M, Elias-Espinosa M, Damián-Mejía O, Flores-Rentería M A, Arenas-Flores A, and Hernández-Ávila J, Surf Eng 30 (2014) 490.

    Article  Google Scholar 

  20. Elias-Espinosa M, Ortiz-Domínguez M, Keddam M, Flores-Rentería M A, Damián-Mejía O, Zuno-Silva J, Hernández-Ávila J, Cardoso-Legorreta E, and Arenas-Flores A, J Mater Eng Perform 23 (2014) 2943.

    Article  Google Scholar 

  21. Kulka M, Makuch N, Pertek A, and Maldzinski L, J. Solid State Chem 199 (2013) 196.

    Article  Google Scholar 

  22. Brakman C M, Gommers A W J, and Mittemeijer E J, J Mater Res 4 (1989) 1354.

    Article  Google Scholar 

  23. Massalski T B, Binary Alloys Phase Diagrams, 2nd Edn., ASM International, Materials Park, OH (1990).

    Google Scholar 

  24. Yu L G, Chen X J, Khor K A, and Sundararajan G, Acta Mater 53 (2005) 2361.

    Article  Google Scholar 

  25. Okamoto H, J Phase Equilib Differ 25 (2004) 297.

    Article  Google Scholar 

  26. Nait Abdellah Z, Chegroune R, Keddam M, Bouarour B, Haddour L, and Elias A, Defect Diffus Forum 322 (2012) 1.

    Article  Google Scholar 

  27. Dybkov V I, Reaction Diffusion and Solid State Chemical Kinetics, Trans Tech Publications, Dürnten (2010) p 7.

    Google Scholar 

  28. Press W H, Flanery B P, and Teukolsky S A, Numerical Recipes in Pascal: The Art of Scientific Computing, Cambridge University, Cambridge (1989).

    Google Scholar 

  29. Campos-Silva I, Bravo-Bárcenas D, Meneses-Amador A, Ortiz-Dominguez M, Cimenoglu H, Figueroa-López U, and Andraca-Adame J, Surf Coat Technol 237 (2013) 402.

    Article  Google Scholar 

  30. H. Kunst, O. Schaaber, Härterei-Tech Mitt 22 (1967) 275.

    Google Scholar 

  31. Campos-Silva I, Ortiz-Domínguez M, Bravo-Bárcenas O, Doñu-Ruiz M A, Bravo-Bárcenas D, Tapia-Quintero C, and Jiménez-Reyes M Y, Surf Coat Technol 205 (2010) 403.

    Article  Google Scholar 

  32. Taktak S, J Mater Sci 41 (2006) 7590.

    Article  Google Scholar 

  33. Campos-Silva I, Ortiz-Domínguez M, Tapia-Quintero C, Rodríguez-Castro G, Jiménez-Reyes M Y, and Chávez-Gutiérrez E, J Mater Eng Perform 21 (2012) 1714.

    Article  Google Scholar 

  34. Genel K, Vacuum 80 (2006) 451.

    Article  Google Scholar 

  35. Xu L, Wu X, and Wang H, J Mater Sci Technol 23 (2007) 525.

    Google Scholar 

  36. Campos-Silva I, Ortiz-Domínguez M, López-Perrusquia N, Bermúdez-Rodríguez G, and Gómez-Vargas O A, Defect Diffus Forum 283–286 (2009) 681.

    Article  Google Scholar 

  37. Badini C, Gianoglio G, and Pradelli G, Surf Coat Technol 30 (1987), 157.

    Article  Google Scholar 

  38. Nait Abdellah Z, Keddam M, and Elias A, Acta Phys Pol A 122 (2012) 588.

    Google Scholar 

  39. Dukarevich I S, Mozharov M V, and Shigarev A S, Metallovedenie Termicheskaya I Obrabotka Metallov 2 (1973) 64.

    Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by a grant of CONACyT and PROMEP México. Also, the authors want to thank Ing. Martín Ortiz Granillo, who is in charge as Director of the Escuela Superior de Ciudad Sahagún which belongs to the Universidad Autónoma del Estado de Hidalgo, México and Dr. Alejandro Domínguez, who is Coordinador del Programa para Apoyo a la Publicación de Investigaciones, Dirección de Desarrollo Curricular y Nuevos Productos and Vicerrectoría Académica UNITEC for all the facilities to accomplish this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keddam, M., Ortiz-Domínguez, M., Elias-Espinosa, M. et al. Growth Kinetics of the Fe2B Coating on AISI H13 Steel. Trans Indian Inst Met 68, 433–442 (2015). https://doi.org/10.1007/s12666-014-0472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0472-x

Keywords

Navigation