Skip to main content
Log in

Diffusion Kinetics and Characterization of Fe2B Coatings Grown Thermochemically on Steel ASTM A709

  • THERMOCHEMICAL TREATMENT AND COATINGS
  • Published:
Metal Science and Heat Treatment Aims and scope

The study is devoted to pack-powder boriding of ASTM A709 steel in a powder mixture containing boron carbide, potassium fluoroborate and silicon carbide. This surface hardening process is conducted between 1123 and 1273 K for from 2 to 8 h. The formed diiron boride layers are studied by different techniques (scanning electron microscopy, x-ray diffraction (XRD) analysis, glow discharge optical emission spectroscopy (GDOES), Vickers microhardness testing, surface profilometry, Rockwell-C indentation cohesion and pin-on-disc tests). Kinetically, an integral-method-based approach is applied to calculate the boron diffusivities in Fe2B. The activation energy of the process is deduced and compared to reported data. The same model is ultimately verified by comparing the empirical values of the thickness of the Fe2B layers obtained at 1223 K and 1273 K for 9 h and the predicted values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. M. Sepsi, P. Szobota, and V. Mertinger, “Quasi-non-destructive characterization of carburized case depth by an application of centerless x-ray diffractometers,” J. Mater. Eng. Perform., 31, 4668 – 4678 (2022).

    Article  CAS  Google Scholar 

  2. N. Koga, K. Tanahara, and O. Umezawa, “Deformation structure around a crack in γ-Fe4N layer of nitrided extra-low-carbon steel subjected to cyclic tensile test,” Metall. Mater. Trans. A, 53, 1150 – 1155 (2022).

    Article  CAS  Google Scholar 

  3. M. Belaid, M.L. Fares, O. Assalla, and F. Boukari, “Surface characterization of a modified cold work tool steel treated by powder-pack boronizing,” Materwiss. Werksttech, 53, 15 – 38 (2022).

    Article  Google Scholar 

  4. M. Kulka, “Trends in thermochemical techniques of boriding,” in: Current Trends in Boriding, Engineering Materials, Springer, Cham, Switzerland (2019), pp. 17 – 98.

  5. I. Campos, J. Oseguera, U. Figueroa, et al., “Kinetic study of boron diffusion in the paste-boriding process,” Mater. Sci. Eng. A, 352, 261 – 265 (2003).

    Article  Google Scholar 

  6. I. Türkmen and E. Yalamaç, “Effect of alternative boronizing mixtures on boride layer and tribological behaviour of boronized SAE 1020 steel,” Met. Mater. Int., 28, 1114 – 1128 (2022).

    Article  Google Scholar 

  7. E. A. Smol’nikov and L. M. Sarmanova, “Study of the possibility of liquid boriding of high-speed steels,” Met. Sci. Heat Treat., 24, 785 – 788 (1982).

  8. M. Kulka, N. Makuch, and A. Piasecki, “Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron,” Surf. Coat. Technol., 325, 515 – 532 (2017).

    Article  CAS  Google Scholar 

  9. K. Sikorski, T. Wierzchoń, and P. Bieliński, “X-Ray microanalysis and properties of multicomponent plasma-borided layers on steels,” J. Mater. Sci., 33, 811 – 815 (1998).

    Article  ADS  CAS  Google Scholar 

  10. I. Gunes, S. Ulker, and S. Taktak, “Kinetics of plasma paste boronized AISI 8620 steel in borax paste mixtures,” Prot. Met. Phys. Chem. S., 49, 567 – 573 (2013).

    Article  CAS  Google Scholar 

  11. V. Jain and G. Sundararajan, “Influence of the pack thickness of the boronizing mixture on the boriding of steel,” Surf. Coat. Technol., 149, 21 – 26 (2002).

    Article  CAS  Google Scholar 

  12. İ. Türkmen, E. Yalamaç, and M. Keddam, “Investigation of tribological behaviour and diffusion model of Fe2B layer formed by pack-boriding on SAE 1020 steel,” Surf. Coat. Technol, 377, 124888 (2019).

    Article  Google Scholar 

  13. I. Morgado-González, M. Ortiz-Dominguez, and M. Keddam, “Characterization of Fe2B layers on ASTM A1011 steel and modeling of boron diffusion,” Mater. Testing, 64, 55 – 66 (2022).

    Article  ADS  Google Scholar 

  14. I. Campos, M. Islas, E. González, et al., “Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing,” Surf. Coat. Technol., 201, 2717 – 2723 (2006).

    Article  CAS  Google Scholar 

  15. N. López Perrusquia, M. Antonio Dońu Ruiz, E. Y. Vargas Oliva, and V. Cortez Suarez, “Diffusion of hard coatings on ductile cast iron,” Mater. Res. Soc. Symp. Proc., 1481, 105 – 112 (2012).

  16. M. Ortiz-Domínguez, I. Campos-Silva, E. Hernández-Sánchez, et al., “Estimation of Fe2B growth on low-carbon steel based on two diffusion models,” Int. J. Mater. Res., 102, 429 – 434 (2011).

    Article  Google Scholar 

  17. Z. Nait Abdellah, M. Keddam, and P. Jurči, “Simulation of boronizing kinetics of ASTM A36 steel with the alternative kinetic model and the integral method,” Koroze Ochr., 65, 33 – 39 (2021).

  18. R. D. Ramdan, T. Takaki, K. Yashiro, and Y. Tomita, “The effects of structure orientation on the growth of Fe2B boride by multi-phase-field simulation,” Mater. Trans., 51, 62 – 67 (2010).

    Article  CAS  Google Scholar 

  19. I. Campos-Silva, M. Ortiz-Domínguez, C. Villa Velázquez, et al., “Growth kinetics of boride layers: a modified approach,” Defect Diffus. Forum, 272, 79 – 86 (2007).

  20. L. G. Yu, X. J. Chen, K. A. Khor, and G. Sundararajan, “FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics,“ Acta Mater., 53, 2361 – 2368 (2005).

  21. H. Okamoto, “B – Fe (boron-iron),” J. Ph. Equilibria Diffus., 25, 297 – 298 (2004).

    Article  CAS  Google Scholar 

  22. N. Vidakis, A. Antoniadis, and N. Bilalis, “The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds,” J. Mater. Process. Technol., 143 – 144, 481 – 485 (2003).

    Article  Google Scholar 

  23. S. Taktak, “Some mechanical properties of borided AISI H13 and 304 steels,” Mater. Des., 28, 1836 – 1843 (2007).

    Article  CAS  Google Scholar 

  24. M. Ortiz-Domínguez, O. A. Gómez-Vargas, M. Keddam, et al., “Kinetics of boron diffusion and characterization of Fe2B layers on AISI 9840 steel,” Prot. Met. Phys. Chem. S., 53, 534 – 547 (2017).

    Article  Google Scholar 

  25. C. I. Villavelázquez-Mendoza, J. L. Rodríguez-Mendoza, V. Ibarra-Galván, et al., “Effect of substrate roughness, time and temperature on the processing of iron boride coatings: experimental and statistical approaches,” Int. J. Surf. Sci. Eng., 8, 71 – 91 (2014).

    Article  Google Scholar 

  26. M. Keddam, M. Ortiz-Domínguez, A. Cruz-Avilés, et al., “Kinetic investigation, metallurgical and tribological properties of diiron boride layers on ASTM A572 steel,” Met. Sci. Heat Treat., 65(1 – 2), 74 – 81(2021).

    ADS  Google Scholar 

  27. Y. Kayali and R. Kara, “Investigation of wear behavior and diffusion kinetic values of boronized Hardox-450 steel,” Prot. Met. Phys. Chem. S., 57, 1025 – 1033 (2021).

    Article  Google Scholar 

  28. G. Kartal, O. L. Eryilmaz, G. Krumdick, et al., “Kinetics of electrochemical boriding of low carbon steel,” Appl. Surf. Sci., 257, 6928 – 6934 (2011).

    Article  ADS  CAS  Google Scholar 

  29. S. Sen, U. Sen, and C. Bindal, “An approach to kinetic study of borided steels,” Surf. Coat. Technol., 191, 274 – 285 (2005).

    Article  CAS  Google Scholar 

  30. M. Arslan, O. Kagan Coskun, M. Karimzadehkhoei, et al., “Evaluation of pulse current integrated CRTD-Bor for boron diffusion in low carbon steel,” Mater. Lett., 3081, 131299 (2022).

  31. A. Milinović, V. Marušić, and I. Samardžić, “Research into boride layers growth kinetics on C45 carbon steel,” Metalurgija, 55, 671 – 674 (2016).

    Google Scholar 

  32. Z. G. Su, X. X. Lv, J. An, et al., “Role of RE element Nd on boronizing kinetics of steels,” J. Mater. Eng. Perform., 21, 1337 – 1345 (2012).

    Article  CAS  Google Scholar 

  33. H. M. Fang, G. S. Zhang, and L. S. Xia, “Properties and growth kinetics of the boride layer of a boriding-strengthened Fe-based powder metallurgical material,” Strength Mater., 53, 65 – 72 (2021).

    Article  CAS  Google Scholar 

Download references

The work has been supported by a grant of PRODEP and CONACyT México (National Council of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keddam.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 11 – 21, September, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Dominguez, M., Keddam, M. Diffusion Kinetics and Characterization of Fe2B Coatings Grown Thermochemically on Steel ASTM A709. Met Sci Heat Treat 65, 538–546 (2024). https://doi.org/10.1007/s11041-024-00967-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-024-00967-w

Key words

Navigation