Skip to main content
Log in

Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mixtures of oolitic iron ore and coal with different C/O molar ratios (1.5, 2.0, 2.5, and 3.0) were heated from 600 to 1300 °C at four heating rates (5, 10, 15, and 20 °C min−1). The degree of reduction and reduction rate were calculated from the measurements of weight loss and off-gas composition using thermogravimetry technique and NDIR gas analyzer. The kinetic parameters (the activation energy, pre-exponential factor, and reduction model) were determined by Ozawa–Flynn–Wall kinetic method and by Šatava–Šesták method. It was found that, as temperature increased, the degree of reduction increased, while the reduction rate rapidly increased first, subsequently stabilized, and then decreased. The non-isothermal reduction of oolitic iron ore with coal was significantly influenced by both heating rate and C/O molar ratio, although the impact of the latter was much less. The values of activation energy estimated by Ozawa–Flynn–Wall method ranged from 159.2 to 169.6 kJ mol−1. The mechanism function for the non-isothermal coal-based reduction of oolitic iron ore was D5 reaction model. The non-isothermal kinetic models for coal-based reduction of oolitic iron ore were proposed based on the obtained kinetic parameters. The iron oxide in the oolitic ore was reduced to metallic iron in the sequence of Fe2O3 → Fe3O4 → FeO (FeAl2O4, Fe2SiO4) → Fe. Phase change and reduction mechanism shift were observed during the reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Song SX, Campos-Toro EF, Zhang YM, Lopez-Valdivieso A. Morphological and mineralogical characterizations of oolitic iron ore in the Exi region China. Int J Min Metall Mater. 2013;20(2):113–8.

    Article  CAS  Google Scholar 

  2. Zimmels Y, Weissberger S, Lin IJ. Effect of oolite structure on direct reduction of oolitic iron ores. Int J Miner Process. 1988;24:55–71.

    Article  CAS  Google Scholar 

  3. Abro MI, Pathan AG, Mallah AH. Liberation of oolitic hematite grains from iron ore, Dilband Mines Pakistan. Mehran Univ Res J Eng Technol. 2011;30:329–38.

    Google Scholar 

  4. Adedeji FA, Sale FR. Characterization and reducibility of Itakpe and Agbaja (Nigerian) iron ores. Clay Miner. 1984;19:843–56.

    Article  CAS  Google Scholar 

  5. Manieh AA. Oolite liberation of oolitic iron ore, Wadi Fatima, Saudi Arabia. Int J Miner Process. 1984;13:187–92.

    Article  CAS  Google Scholar 

  6. Srivastava U, Kawatra SK. Strategies for processing low-grade iron ore minerals. Miner Process Extr M. 2009;30(4):361–71.

    Article  CAS  Google Scholar 

  7. Sun YS, Han YX, Gao P, Wang ZH, Ren DZ. Recovery of iron from high phosphorus oolitic iron ore using coal-based reduction followed by magnetic separation. Int J Miner Metall Mater. 2013;20(5):411–9.

    Article  CAS  Google Scholar 

  8. Yu W, Sun TC, Kou J, Wei YX, Xu CY, Liu ZZ. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int. 2013;53(3):427–33.

    Article  CAS  Google Scholar 

  9. Yu W, Sun TC, Liu ZZ, Kou J, Xu CY. Effects of particle sizes of iron ore and coal on the strength and reduction of high phosphorus oolitic hematite-coal composite briquettes. ISIJ Int. 2014;54(1):56–62.

    Article  CAS  Google Scholar 

  10. Li SF, Sun YS, Han YX, Shi GQ, Gao P. Fundamental research in utilization of an oolitic hematite by deep reduction. Adv Mater Res. 2011;158:106–12.

    Article  CAS  Google Scholar 

  11. Li KQ, Ni W, Zhu M, Zheng MJ, Li Y. Iron extraction from oolitic iron ore by a deep reduction process. J Iron Steel Res Int. 2011;18(8):9–13.

    Article  Google Scholar 

  12. Sun YS, Han YX, Gao P, Ren DZ. Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore. Int J Miner Metall Mater. 2014;21(4):331–8.

    Article  CAS  Google Scholar 

  13. Yin J, Lv X, Bai C, Qiu G, Ma S, Xie B. Dephosphorization of iron ore bearing high phosphorous by carbothermic reduction assisted with microwave and magnetic separation. ISIJ Int. 2012;52(9):1579–84.

    Article  CAS  Google Scholar 

  14. Li YL, Sun TC, Kou J, Guo Q, Xu CY. Study on phosphorus removal of high-phosphorus oolitic hematite by coal-based direct reduction and magnetic separation. Miner Process Extr M. 2014;35(1):66–73.

    Article  CAS  Google Scholar 

  15. Sun YS, Gao P, Han YX, Ren DZ. Reaction behavior of iron minerals and metallic iron particles growth in coal-based reduction of an oolitic iron ore. Ind Eng Chem Res. 2013;52(6):2323–9.

    Article  CAS  Google Scholar 

  16. Han YX, Sun YS, Gao P, Li YJ, Mu YF. Particle size distribution of metallic iron during coal-based reduction of an oolitic iron ore. Miner Metall Process. 2014;31(3):169–74.

    CAS  Google Scholar 

  17. Park H, Sahajwalla V. Effect of alumina and silica on the reaction kinetics of carbon composite pellets at 1 473 K. ISIJ Int. 2014;54(1):49–55.

    Article  CAS  Google Scholar 

  18. Huang B-H, Lu W-K. Kinetics and mechanisms of reactions in iron ore/coal composites. ISIJ Int. 1993;33(10):1055–61.

    Article  CAS  Google Scholar 

  19. Dutta SK, Ghosh A. Study of nonisothermal reduction of iron ore–coal/char composite pellet. Metall Mater Trans B. 1994;25(1):15–26.

    Article  Google Scholar 

  20. Sun S, Lu WK. A theoretical investigation of kinetics and mechanisms of iron ore reduction in an ore/coal composite. ISIJ Int. 1999;39(2):123–9.

    Article  CAS  Google Scholar 

  21. Sun YS, Han YX, Gao P, Li GF. Investigation of kinetics of coal based reduction of oolitic iron ore. Ironmak Steelmak. 2014;41(10):763–8.

    Article  CAS  Google Scholar 

  22. Sun S, Lu WK. Building of a mathematical model for the reduction of iron ore in ore/coal composites. ISIJ Int. 1999;39(2):130–8.

    Article  CAS  Google Scholar 

  23. El-Geassy AA, Abdel Halim KS, Bahgat M, Mousa EA, El-Shereafy EE, El-Tawi AA. Carbothermic reduction of Fe2O3/C compacts: comparative approach to kinetics and mechanism. Ironmak Steelmak. 2013;40(7):534–44.

    Article  CAS  Google Scholar 

  24. Hou B, Zhang H, Li H, Zhu Q. Study on kinetics of iron oxide reduction by hydrogen. Chin J Chem Eng. 2012;20(1):10–7.

    Article  CAS  Google Scholar 

  25. Jozwiak WK, Kaczmarek E, Maniecki TP, Ignaczak W, Maniukiewicz W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl Catal A-Gen. 2007;326:17–27.

    Article  CAS  Google Scholar 

  26. Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: Part I: low temperature reduction of hematite. Thermochim Acta. 2006;447:89–100.

    Article  CAS  Google Scholar 

  27. Huang MX, Zhou CR, Han XW. Investigation of thermal decomposition kinetics of taurine. J Therm Anal Calorim. 2013;113:589–93.

    Article  CAS  Google Scholar 

  28. Otero M, Calvo LF, Gil MV, García AI, Morán A. Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis. Bioresour Technol. 2008;99:6311–9.

    Article  CAS  Google Scholar 

  29. Janković B, Adnađević B, Mentus S. The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method. Thermochim Acta. 2007;456:48–55.

    Article  CAS  Google Scholar 

  30. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  31. Guinesi LS, Ribeiro CA, Crespi MS, Veronezi AM. Tin (II)-EDTA complex: kinetic of thermal decomposition by non-isothermal procedures. Thermochim Acta. 2004;414:35–42.

    Article  CAS  Google Scholar 

  32. Jankovic B, Mentus S. Model-fitting and model-free analysis of thermal decomposition of palladium acetylacetonate [Pd (acac)2]. J Therm Anal Calorim. 2008;94(2):395–403.

    Article  CAS  Google Scholar 

  33. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  34. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4(3):323–8.

    Article  CAS  Google Scholar 

  35. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    Article  CAS  Google Scholar 

  36. Škvára F, Šesták J. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method. J Them Anal. 1975;8(3):477–89.

    Article  Google Scholar 

  37. Galwey AK. Thermal decomposition of ionic solid. Amsterdam: Elsevier; 1984.

    Google Scholar 

  38. Hu RZ, Shi QZ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008.

    Google Scholar 

  39. Li P, Yu QB, Xie HQ, Qin Q, Wang K. CO2 gasification rate analysis of Datong coal using slag granules as heat carrier for heat recovery from blast furnace slag by using a chemical reaction. Energ Fuel. 2013;27:4810–7.

    Article  CAS  Google Scholar 

  40. Tanaka H. Thermal analysis and kinetics of solid state reactions. Thermochim Acta. 1995;267:29–44.

    Article  CAS  Google Scholar 

  41. Vlaev LT, Markovska IG, Lyubchev LA. Non-isothermal kinetics of pyrolysis of rice husk. Thermochim Acta. 2003;406:1–7.

    Article  CAS  Google Scholar 

  42. Li P, Yu QB, Qin Q, Lei W. Kinetics of CO2/coal gasification in molten blast furnace slag. Ind Eng Chem Res. 2012;51:15872–83.

    Article  CAS  Google Scholar 

  43. Carvalho RJD, Netto PGQ, D’abreu JC. Kinetics of reduction of composite pellets containing iron ore and carbon. Can Metall Q. 1994;33(3):217–25.

    Article  Google Scholar 

  44. Zhu DQ, Chun TJ, Pan J, Zhang JL. Influence of basicity and MgO content on metallurgical performances of Brazilian specularite pellets. Int J Miner Process. 2013;125:51–60.

    Article  CAS  Google Scholar 

  45. Kubaschewski O (1979) Metallurgical thermochemistry. Materials science and technology. New York.

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51134002) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexin Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Han, Y., Wei, X. et al. Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture. J Therm Anal Calorim 123, 703–715 (2016). https://doi.org/10.1007/s10973-015-4863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4863-y

Keywords

Navigation