Skip to main content

Advertisement

Log in

Chronological record, source identification and ecotoxicological impact assessment of heavy metals in sediments of Kallar Kahar Lake, Salt Range-Punjab, Pakistan

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The impact of climate change was studied based on the geochemical indicators, such as total organic carbon (TOC), calcium carbonate, stable carbon isotopes and heavy metals (HMs) in sediments of Kallar Kahar Lake. The sediment core was chronological dated from 1876 to 2011 (135 years back) using 210Pb isotope and sediment accumulation rates were in the range of 0.01–0.85 g cm−2 y−1, signifying the higher sediment accumulation rates during the last decade. Sediment accumulation rates were highly variable and ranged between 0.01 and 0.85 g cm−2 y−1. The δ13C values of total organic carbon (TOC) in surface and sediment core were − 19.8 to − 13.7 and − 19.3 to − 11.9 ‰VPDB, suggesting mainly the prevalence of autochthonous source of carbon. The accumulation of organic carbon (0.3–51.4 mg C cm−2 y−1) over period from bottom to surface layer of sediment core was observed with most significant concentration in recent deposit layer. δ13Ccarb ranged from − 1.9 to 1.7 for surface sediment and − 4.08 to − 0.75 ‰VPDB sediment core; slightly lower its value than marine carbonates (0 ‰VPDB), interpreting precipitation of calcite in sediments. Magnitude of HMs for Cd (7.47-fold), As (2.22-fold), Ni (1.80-fold), Cu (1.23-fold) and Cr (1.19-fold) in surface sediment, and As (3.98-fold), Ni (1.58-fold) and Cu (1.26-fold) in sediment core relative to Upper Continental Crust (UCC) revealed amplification of HMs in lake sediments in the past. Pollution indices and multivariate techniques revealed higher accumulation of HMs in surface and sediment core, deciphering origin of metals from anthropogenic and natural sources. Ecological risk index (312) and sediment quality guidelines revealed that HMs may affect aquatic life in future. Results indicate that lake is highly impacted by rise in sedimentation rate and accumulation of carbon and HMs in sediments during 1950–2011 by climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abraham J (2013) Organic carbon estimations in soils: analytical protocols and their implications. Rubber Sci 26(1):45–54

    Google Scholar 

  • Afzal S, Yunas M, Hussain K (1999) Physical and chemical characterization of the agricultural lands of the Soon Sakesar Valley, Salt Range, Pakistan. Aust J Soil Res 37:1035–1046

    Article  Google Scholar 

  • Ahmad K, Hussain M, Ashraf M, Luqman M, Ashraf MY, Khan ZI (2007) Indigenous vegetation of soon valley at the risk of extinction. Pak J Bot 39(3):679–690

    Google Scholar 

  • Ahmad MI, Song J, Sun H, Wang X, Mehmood MS, Sajid M, Su P, Khan AJ (2020) contamination level, ecological risk, and source identification of heavy metals in the Hyporheic Zone of the Weihe River, China. Int J Environ Res Public Health 17(1070):1–17

    Google Scholar 

  • Ali Z, Shelly SY, Bib F, Joshua G, Khan AM, Khan BN, Akhtar M (2011) Salt range wetlands complex, exploratory/baseline survey. J Animal Plant Sci 21(2):410–414

    Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of Lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8

    Article  Google Scholar 

  • Arribere MA, Ribeiro GS, Bubach DF, Vigliano PH (2006) Trace elements as fingerprint of Lake of Provenance and of species of some native and exotic fish of Northern Patagonian Lakes. Biol Trace Elem Res 143:965–973

    Google Scholar 

  • Arshad M (2011) Site management plan, Kallar Kahar Game Reserve, WWF, Wetlands, The Ministry of Environment’s Pakistan Wetlands Programme, PWP – The Ministry of Environment’s Pakistan Wetlands Programme House, Islamabad

  • Augley J, Huxham M, Fernandes TS, Lyndon AR, Bury S (2007) Carbon stable isotopes in estuarine sediments and their utility as migration markers for nursery studies in the Firth of Forth and Forth Estuary, Scotland. Estuar Coast Shelf Sci 72:648–656

    Article  Google Scholar 

  • Bam EKP, Akiti TT, Osae SD, Ganyaglo SY, Gibrilla A (2011) Multivariate cluster analysis of some major and trace elements distribution in an unsaturated zone profile, Densu river basin, Ghana. Afr J Environ Sci Technol 5(3):155–167

    Google Scholar 

  • Bassia N, Kumarb MD, Sharmac A, Pardha-Saradhia P (2014) Status of wetlands in India: a review of extent, ecosystem benefits, threats and management strategies. J Hydrol Reg Stud 2:1–19

    Article  Google Scholar 

  • Baudo R, Amantini L, Bo F, Cenci R, Hannaert P, Lattanzio A, Marengo G, Muntau H (1989) Spatial distribution patterns of metals in the surface sediments of Lake Orta (Italy). Sci Total Environ 87–88:117–128

    Article  Google Scholar 

  • Begy R, Cosma C, Timar A (2009) Recent changes in Red Lake (Romania) sedimentation rate determined from depth profiles of 210Pb and 137Cs radioisotopes. J Environ Radioact 100:644–648

    Article  Google Scholar 

  • Bibi MH, Ahmed F, Ishiga H (2007) Assessment of metal concentrations in lake sediments of southwest Japan based on sediment quality guidelines. Environ Geol 52:625–639

    Article  Google Scholar 

  • Bilal S, Rais M, Anwar M, Hussain I, Kabeer SMB (2013) Habitat association of Little Grebe (Tachybaptus ruficollis) at Kallar Kahar Lake, Pakistan. J King Saud Univ Sci 25:267–270

    Article  Google Scholar 

  • Bohlin, (2005) The influence by point sources on carbon, nitrogen and metals in two sedimentary environments, Department of Geology and Geochemistry, Stockholm University SE-106 91 Stockholm, Sweden

  • Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sediment organic material as indicators of historic lake trophic state. J Paleolimnol 22:205–221

    Article  Google Scholar 

  • Chaudhary MZ, Ahmad N, Mashiatullah A, Munir S, Javed T (2013) Assessment of metals concentration and ecotoxicology of the sediment core of Rohri Creek, Karachi Coast. Pakistan Acta Geologica Sinica 87(5):1434–1443

    Article  Google Scholar 

  • Chaudhary MZ, Khan K, Mashiatullah A, Javed T, Yaqoob N, Robab Um-e, Khan MS, Abid J (2021) Sediment accumulation rates in Karachi Coastal area Pakistan using 210Pb dating method. J Radioanal Nucl Chem 327(1):13–20

    Article  Google Scholar 

  • Coskun A, Horasan BY, Ozturk A (2021) Heavy metal distribution in stream sediments and potential ecological risk assessment in Konya Northeast region. Environ Earth Sci 80:181

    Article  Google Scholar 

  • Craig H (1953) The geochemistry of the stable carbon isotopes. GeocIdmica et Cosmochimica Acta 3:53–92

    Article  Google Scholar 

  • Cuna S, Pop D, Hosu A (2001) Carbon and oxygen isotope ratios in Rona Limestone, Romania. Stud Univer Babeş-Bolyai Geologia 46(1):141–151

    Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes J (eds) In Handbook of environmental isotope geochemistry, the terrestrial environment, Part A. Elsevier Scientific Publishing Company, New York, pp 329–406

    Google Scholar 

  • Deines P, Langmuir D, Harmon RS (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochemica et Cosmochimica Acta 38(7):1147–1164

    Article  Google Scholar 

  • Descolas-Gros C, Fontugne M (1990) Stable carbon isotope fractionation by marine phytoplankton during photosynthesis. Plant Cell Environ 13:207–218

    Article  Google Scholar 

  • Devesa-Rey R, Barral MT, Jouanneau J-M, Dız-Fierros F (2010) Analysis of the degree of contamination and evolution in the last 100 years of the composition of the bed sediments of the Anllons Basin. Environ Earth Sci 61:1401–1417

    Article  Google Scholar 

  • Din ZB (1992) Use of aluminium to normalize heavy-metal data from estuarine and coastal sediments of straits of Melaka. Mar Pollut Bull 24:484–491

    Article  Google Scholar 

  • Dirilgen N (2001) Accumulation of heavy metals in freshwater organisms: assessment of toxic interaction. Turk J Chem 25(3):173–179

    Google Scholar 

  • El-Sayed SA, Moussa EMM, El-Sabagh MEI (2015) Evaluation of heavy metal content in Qaroun Lake, El-Fayoum, Egypt. Part I: bottom sediments. J Radiat Res Appl Sci 1–10

  • Fedotov AP, Trunova VA, Enushchenk IV, Vorobyeva SS, Stepanova OG, Petrovskii SK, Melgunov MS, Zvereva VV, KrapivinaZheleznyakova SMTO (2015) A 850-year record climate and vegetation changes in East Siberia (Russia), inferred from geochemical and biological proxies of lake sediments. Environ Earth Sci 73:7297–7314

    Article  Google Scholar 

  • Flynn WW (1968) The determination of low levels of Polonium-210 in environmental materials. Anal Chim Acta 43:221–227

    Article  Google Scholar 

  • Forghani G, Moore F, Lee S, Qishlaqi A (2009) Geochemistry and speciation of metals in sediments of the Maharlu Saline Lake, Shiraz, SW Iran. Environ Earth Sci 59:173–184

    Article  Google Scholar 

  • Fuller CC, Van Geen A, Baskaran M, Anima R (1999) Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,240Pu. Mar Chem 64:7–27

    Article  Google Scholar 

  • Gao L, Hanb L, Peng W, Gao Bo XuD, Wan X (2018) Identification of anthropogenic inputs of trace metals in lake sediments using geochemical baseline and Pb isotopic composition. Ecotoxicol Environ Saf 164:226–233

    Article  Google Scholar 

  • Garrett RG (2000) Natural sources of metals to the environment. Human Ecol Risk Assess 6:945–963

    Article  Google Scholar 

  • Ghaleno OR, Sayadi MH, Rezaei MR (2015) Potential ecological risk assessment of heavy metals in sediments of water reservoir case study: Chah Nimeh of Sistan. Proc Int Acad Ecol Environ Sci 5(4):89–96

    Google Scholar 

  • Goher ME, Farhat HI, AbdoSalem MHSG (2014) Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. Egypt J Aquat Res 40:213–224

    Article  Google Scholar 

  • Goodyear KL, McNeill S (1999) Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds. Sci Total Environ 229:1–19

    Article  Google Scholar 

  • Grosheva EL, Voronskaya GN, Pastukhove MV (2000) Trace element bio-availability in Lake Baikal. Aquat Ecosyst Health Manag 3:229–234

    Article  Google Scholar 

  • Håkanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Herczeg AL, Smith AK, Dighton JC (2001) A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia: C:N, δ15N and δ13C in sediments. Appl Geochem 16:73–84

    Article  Google Scholar 

  • Huang L, Rad S, Li Xu, Gui L, Song X, Li Y, Wu Z, Chen Z (2020) Heavy metals distribution, sources, and ecological risk assessment in Huixian Wetland, South China. Water 12(431):1–14

    Google Scholar 

  • Hussain SA, Han F-Q, Han WW, Rodríguez A, Han J-L, Han J, Nian X-Q, Yi L, Ma Z, Widory D (2019) Climate change impact on the evolution of the Saline Lakes of the Soan-Sakaser Valley (Central Salt Range; Pakistan): Evidences from Hydrochemistry and Water (δD, δ18O) and chlorine isotope (δ35Cl) stable isotope. Water 11:912. https://doi.org/10.3390/w11050912

    Article  Google Scholar 

  • Iqbal F, Raza N, Ali M, Atjhar M (2006) Contamination of Kallar Kahar Lake by inorganic elements and heavy metals and their temporal variations. J Appl Sci Environ Manag 10(2):95–98

    Google Scholar 

  • Jambrina-Enríquez M, Recio C, Armenteros I (2018) Biogeochemical characterization of a Mediterranean shallow lake using stable isotopes: Laguna del Cristo (NW Iberian Peninsula). Environ Earth Sci 77:49

    Article  Google Scholar 

  • Javed T, Ahmad N, Mashiatullah A (2018) Heavy metals contamination and ecological risk assessment in surface sediments of Namal Lake, Pakistan. Pol J Environ Stud 27(2):675–688

    Article  Google Scholar 

  • Jennya J-P, Koirala S, Gregory-Eaves I, Francus P, Niemann C, Ahrens B, Brovkin V, Baud A, Ojala AEK, Normandeau A, Zolitschka B, Carvalhais N (2019) Human and climate global-scale imprint on sediment transfer during the Holocene. Proc Natl Acad Sci 116(46):22972–22976

    Article  Google Scholar 

  • Jeyabal G, Ramasamy S (2014) Down core variation in sediment characteristics and trace element geochemistry of a core sample in Pichavaram Mangrove area, Tamil Nadu, Southeast Coast of India. Environ Geo Chimica Acta 1(3):206

    Google Scholar 

  • Khan AA, Arshad S (2014) Wetlands of Pakistan: distribution, degradation and management, Pakistan. Geograph Rev 69(1):28–45

    Google Scholar 

  • Khan K, Ikram M, Faridi R, Amjad R, Chaudhray MN (2015) Perils of eutrophication and spatio-temporal dynamics of Lake Kalar Kahar, Potohar Pleatue, Salt Range, Pakistan. Sci Int Lahore 27(3):3341–3346

    Google Scholar 

  • Khan MA, Khan JA, Ali Z, Ahmad I, Ahmad MN (2016) The challenge of climate change and policy response in Pakistan. Environ Earth Sci 75(412):2–16

    Google Scholar 

  • Kormoker T, Proshad R, Islam MS (2019) Ecological risk assessment of heavy metals in sediment of the Louhajang River, Bangladesh. SF J Environ Earth Sci 2:1–13

    Google Scholar 

  • Li X, Liu W, Xu L (2012) Carbon isotopes in surface-sediment carbonates of modern Lake Qinghai (Qinghai-Tibet Plateau): Implications for lake evolution in arid areas. Chem Geol 300–301:88–96

    Article  Google Scholar 

  • Lubis AA (2006) Constant Rate of Supply (CRS) Model for determining the sediment accumulation rates in the coastal area using 210Pb. J Coast Dev 10(1):9–18

    Google Scholar 

  • Luque JA, Julia R (2002) Lake sediment response to land-use and climate change during the last 1000 years in the oligotrophic Lake Sanabria (northwest of Iberian Peninsula). Sed Geol 148:343–355

    Article  Google Scholar 

  • Ma L, Wu J, Abuduwaili J, Liu W (2016) Geochemical responses to anthropogenic and natural influences in Ebinur Lake sediments of Arid Northwest China. PLoS One 11:e015819

    Google Scholar 

  • Maanan M, Saddik M, Maanan M, Chaibi M, AssobheiZourarah OB (2015) Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol Ind 48:616–626

    Article  Google Scholar 

  • Macdonald DD, IngersollBerger CGTA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Sentim Contam Toxicol 39:20–31

    Article  Google Scholar 

  • Manzoor M, Bibi S, Manzoor M (2013) Historical analysis of flood information and impacts assessment and associated response in Pakistan (1947–2011). Res J Environ Earth Sci 5(3):139–146

    Google Scholar 

  • Massart DL, Kaufman L (1983) The interpretation of analytical chemical data by the use of cluster analysis. Wiley, New York

    Google Scholar 

  • Meena NK, Prakasam M, Bhushan R, Sarkar S, Diwate P, Banerji U (2017) Last-five-decade heavy metal pollution records from the Rewalsar Lake, Himachal Pradesh, India. Environ Earth Sci 76:39

    Article  Google Scholar 

  • Meyers PA, Teranes L (2002) Sediment organic matter: 239–269. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol. 2. Physical and geochemical methods, Kluwer

  • Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Moforis L, Kostopoulou S, Panagopoulos G, Pyliotis I, Triantaphylou M, Manoutsoglou E, and Zelilidis A (2013) Sedimentation processes and palaeographic evolution of Makrilia Pliocene Deposits, SE Crete. Bulletin of the Geological Society of Greece, vol. XLVII, Proceedings of the 13th International Congress, Chania, Sep 2013, 216–225

  • Moore F, Forghani G, Qishlaqi A (2009) Assessment of heavy metal contamination in water and surface sediments of the Maharlu Saline Lake, SW Iran. Iran J Sci Technol Trans A 33(A1):43–55

    Google Scholar 

  • Muller, (1979) Heavy metals in the sediment of the Rhine-Changes seity. 1971. Umsch Wiss Tech 79:778–783

    Google Scholar 

  • Munir M, Qureshi R, Arshad M, Chaudhry AK, Laghari MK (2012) Taxonomic study of Bacillariophyta from Kallar Kahar Lake Chakwal, Punjab, Pakistan. Pak J Bot 44(5):1805–1814

    Google Scholar 

  • Navarro EMG, Tagle MEV, Marín MTL, Alfonso MSP (2011) Comparison of USEPA 3050B and ISO 14869–1:2001 digestion methods for sediment analysis by using FAAS and ICP-OES quantification techniques. Quim Nova 34(8):1443

    Article  Google Scholar 

  • Palma P, Ledo L, Alvarenga P (2015) Assessment of trace element pollution and its environmental risk to freshwater sediments influenced by anthropogenic contributions: the case study of Alqueva reservoir (Guadiana Basin). CATENA 128:174–184

    Article  Google Scholar 

  • Kumar P, Meena NK, Diwate P, Mahajan AK, Bhushan R (2019) The heavy metal contamination history during ca 1839–2003 AD from Renuka Lake of Lesser Himalaya, Himachal Pradesh, India. Environ Earth Sci 78:549

    Article  Google Scholar 

  • Persaud D, Jaagumagi R, Hayton A (1993) Guidelines for protection and management of aquatic sediment quality, Water Resources Branch, Ministry of the Environment and Energy, Ontario, ISBN 0-7778-9248-7, Cette publication technique n'est disponible qu'en anglais, Copyright: Queen’s Printer for Ontario, Canada

  • Qingyu Z, Bin L, Fengrui Q, Jianwen C, Yong D, Jingru L (2016) Environmental and geochemical significance of carbon and oxygen isotopes of Ordovician carbonate paleokarst in Lunnan Tarim Basin. Environ Earth Sci 75:1074

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Hubert-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leeemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, WalkerWall MDH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  Google Scholar 

  • Saleem M, IqbalShah JMH (2013) A study of seasonal variations and risk assessment of selected metals in sediments from Mangla Lake, Pakistan. J Geochem Explor 125:144–152

    Article  Google Scholar 

  • Salifu M, Aiglsperger T, Alakangas L (2020) Biogeochemical controls on 13CDIC signatures from Circum-Neutral pH Groundwater in Cu–W–F Skarn tailings to acidic downstream surface waters. Minerals 10(758):1–16

    Google Scholar 

  • Schulte P, Geldern RV, Freitag H, Karim A, Négrel P, Petelet-Giraud E, Probst A, Probst JL, Telmer K, VeizerBarth JJAC (2011) Applications of stable water and carbon isotopes in watershed research: weathering, carbon cycling, and water balances. Earth-Sci Rev 109:20–31

    Article  Google Scholar 

  • Shahram E, Akbar HM, Naser J, Seyed FN, Seyed MN, Mohammad Ali E (2011) Trace element level in different tissues of Rutilus frisii kutum collected from Tajan River, Iran. Biol Trace Elem Res 143:965–973

    Article  Google Scholar 

  • Shamsuddin MKN, Suratman S, Ramli MF, Sulaiman WNA, Sefie A (2016) Hydrochemical assessment of surface water and groundwater quality at Bank Infiltration Site, IOP Conf. Series: Materials Science and Engineering 13.

  • Shirani M, Afzali KN, Jahan S, Strezov V, Soleimani-Sardo M (2020) Pollution and contamination assessment of heavy metals in the sediments of Jazmurian playa in southeast Iran. Scientific Report 10(4775).

  • Swarnalatha K, Letgtha J, Ayoob S (2013) Ecological risk assessment of a tropical lake System. J Urban Environ Eng 7(2):323–329

    Article  Google Scholar 

  • Szmytkiewicz A, Tamara Z (2014) Sediment deposition and accumulation rates determined by sediment trap and 210Pb isotope methods in the Outer Puck Bay (Baltic Sea). Oceanologia 56(1):85–106

    Article  Google Scholar 

  • Taylor ZP (2011) Spatial variation in organic carbon and stable isotope composition of lake sediments at Laguna Zoncho, Costa Rica. A Dissertation Presented for the Doctor of Philosophy Degree University of Tennessee, Knoxville.

  • Tylmann W (2004) Estimating recent sedimentation rates using 210Pb on the example of morphologically complex lake (upper Lake raduñskie, N Poland). Geochronom, J Methods Appl Absol Chronol 23:21–26

    Google Scholar 

  • Udayakumar P, Chandran A, Jean-Jose J, Rajesh BR, Narendra BK, Ouseph PP (2011) Seasonal dynamics of dissolved metals in surface coastal waters of South-West India. Bull Environ Contam Toxicol 87:662–668

    Article  Google Scholar 

  • US Environmental Protection Agency (US-EPA) (2002) Mid-Atlantic Integrated Assessment (MAIA) Estuaries 1997–98: Summary Report, EPA/620/R-02/003, p, 115

  • Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364

    Article  Google Scholar 

  • Vasiliu D, Bucse A, Lupascu N, Ispas B, Gheablau C, Stanescu I (2020) Assessment of the metal pollution in surface sediments of coastal Tasaul Lake (Romania). Environ Monitor Assess 192(749):1–16

    Google Scholar 

  • Vemic M, Rousseau D, Laing G, Lens P (2014) Distribution and fate of metals in the Montenegrin part of Lake Skadar. Int J Sedim Res 29:357–367

    Article  Google Scholar 

  • Vrhovnik P, Šmuc NR, Dolenec T, Serafimovski T, Dolenec M (2013) An evaluation of trace metal distribution and environmental risk in sediments from the Lake Kalimanci (FYR Macedonia). Environ Earth Sci 70:761–775

    Article  Google Scholar 

  • Wang L-F, Yang L-Y, Kong L-H, Li S, Zhu J-R, Wang Y-Q (2014) Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of Nansi Lake, China. Ecotoxicol Environ Saf 113:469–476

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of continental crust. Geochicam et Cosmochemica Acta 59:1217–1233

    Article  Google Scholar 

  • Wondim YK, Mosa HM (2015) Spatial variation of sediment physicochemical characteristics of Lake Tana, Ethiopia. J Environ Earth Sci 5(13):95–109

    Google Scholar 

  • Xie Z, He J, LuC ZR, Zhou B, Mao H, Song W, Zhao W, Hou D, Wang J, Li Y (2015) Organic carbon fractions and estimation of organic carbon storage in the lake sediments in Inner Mongolia Plateau, China. Environ Earth Sci 73:2169–2178

    Article  Google Scholar 

  • Xu J, Chen Y, Zheng L, Liu B, Liu J, Wang X (2018) Assessment of heavy metal pollution in the sediment of the main tributaries of Dongting Lake, China. Water 10:1060

    Article  Google Scholar 

  • Yalcin F, Kilic S, Nyamsari DG, Yalcin MG, Kilic M (2016) Principal component analysis of integrated metal concentrations of Bogacayi Riverbank Sediments in Turkey. Pol J Environ Stud 25(2):471

    Article  Google Scholar 

  • Yang P, Yang M, Mao R, Shao HO (2014) Multivariate-statistical assessment of heavy metals for agricultural soils in Northern China. Sci World J 2014:1–7

    Article  Google Scholar 

  • Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159:2575–2585

    Article  Google Scholar 

  • Yi L, Gao B, Liu H, Zhang Y, Du C, Li Y (2020) Characteristics and assessment of toxic metal contamination in surface water and sediments near a Uranium Mining Area. Int J Environ Res Public Health 17(548):1–13

    Google Scholar 

  • Yin X, Liu X, Sun L, Zhu R, Xie Z, Wang Y (2006) A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments. Sci Total Environ 371:252–257

    Article  Google Scholar 

  • Yu Z, Wang X, Han G, Liu X, Zhang E (2018) Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary. Sci Rep 8:10825

    Article  Google Scholar 

  • Yuan H, Song J, Li X, Li N, Duan L (2012) Distribution and contamination of heavy metals in surface sediments of the South Yellow Sea. Mar Pollut Bull 64:2151–2159

    Article  Google Scholar 

  • Zeng H, Wu J (2013) Heavy metal pollution of lakes along the Mid-Lower Reaches of the Yangtze River in China: Intensity, Sources and Spatial Patterns. Int J Environ Res Public Health 10:793–807

    Article  Google Scholar 

  • Zhang JT, Pouyat R (2000) Effects of urbanization on the concentrations of heavy metals in deciduous forest floor in a case study of New York City. Scientia Silvae Sinicae 36(4):42–45

    Google Scholar 

  • Zhang W, Ming Q, Shi Z, Chen G, Niu J, Lei G, Chang F, Zhang H (2014) Lake sediment records on climate change and human activities in the Xingyun Lake Catchment, SW China. PLoS One 9(7):1–10

    Article  Google Scholar 

  • Zhao G, Ye S, Yuan H, Ding X, Wang J (2017) Surface sediment properties and heavy metal pollution assessment in the Pearl River Estuary, China. Environ Sci Poll Res 24:2966–2979

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Javed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, T., Ahmad, N., Mashiatullah, A. et al. Chronological record, source identification and ecotoxicological impact assessment of heavy metals in sediments of Kallar Kahar Lake, Salt Range-Punjab, Pakistan. Environ Earth Sci 80, 546 (2021). https://doi.org/10.1007/s12665-021-09764-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09764-7

Keywords

Navigation