Skip to main content
Log in

Analysis of the degree of contamination and evolution in the last 100 years of the composition of the bed sediments of the Anllóns Basin

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In this study, five cores of the Anllóns River bed sediments were analyzed in order to evaluate the downcore and downstream variations in their chemical composition. The first step was the evaluation of the metal distribution in the bulk (<2 mm) and fine fractions (<63 μm). The analysis revealed that most of the metals followed the same trend in both fractions, although the fine fraction presented usually higher concentrations. However, the concentration of both fractions tended to equalize with increasing contamination. No general increase was observed in the metal concentrations toward the surface which could be attributed to recent anthropogenic contributions. Instead, the distributions were homogeneous or peaked at various depths downcore. The most important historical feature was observed at the mouth of the river, at 96-cm depth, corresponding to the end of the eighteenth century. Upcore increased metal concentrations in parallel with increased fine fraction occurred from this depth, which were attributed to a bridge construction and consequent changes in sediment dynamics. As the metal concentrations can be influenced by variations in texture or other sediment characteristics, the second step was to evaluate the efficiency of several normalized indexes in the assessment of the degree of contamination, by calculating the enrichment factor (EF), the geoaccumulation index (I GEO) and the pollution load index (PLI). The EFs obtained were <10, thus revealing little anthropogenic inputs to the basin. The I GEO produced higher values when compared with the EFs. Instead of absolute EF or I GEO absolute values, the use of cumulative probability plots allowed identifying more accurately potential outliers indicating contamination. Only one population was identified for Zn and Pb, with a reduced number of outliers at the highest concentrations for Pb. As shown, a more complex plot with the outliers identified at C4 and C5. Finally, the PLI allowed determining the absence of a significant contamination in the bed sediments. The bioavailable and non-geogenic fractions contribute up to a 90% of the total concentrations in the case of As and Cu, and showed similar (dissimilar) profiles in comparison with total metals. Also, the quality guidelines were surpassed, so the high solubility of As, Zn, Pb and Ni in the sediments revealed the need to monitor the bed sediment quality of the Anllóns River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allegret A, de Leon MIP (1987) U–Pb dating of Sisargas orthogneiss (Galicia, NW Spain)—New evidence of a Precambrian basement in the northwestern part of the Iberian Peninsula. Neues Jahrbuch Fur Mineralogie-Monatshefte 8:355–368

    Google Scholar 

  • Álvarez-Iglesias P, Quintana B, Rubio B, Pérez-Arlucea M (2007) Sedimentation rates and trace metal input history in intertidal sediments from San Simón Bay (Ría de Vigo, NW Spain) derived from 210Pb and 137Cs chronology. J Environ Radioact 98:229–250. doi:10.1016/j.jenvrad.2007.05.001

    Article  Google Scholar 

  • Andrade ML, Marcet MJ, Montero MJ (1997) Origin and spatial and vertical distribution of Cd and Cr in sediment cores in Vigo Ría (Spain). Contaminated soils. In: Proceedings of the 3rd international conference on biochemistry of trace elements. INRA, Paris

  • Barreiro R, Real C, Carballeira A (1994) Heavy metals in sediment cores from a NW Spain estuary. Bull Environ Contam Toxicol 53(3):368–373. doi:10.1007/BF00197228

    Article  Google Scholar 

  • Birch G, Siaka M, Owens C (1999) The source of anthropogenic heavy metals in fluvial sediments of rural catchment: Cox River, Australia. Water Air Soil Pollut 126:13–25. doi:10.1023/A:1005258123720

    Article  Google Scholar 

  • Bubb JM, Lester JN (1994) Anthropogenic heavy metal inputs to lowland river systems. A case study: the River Stour, UK. Water Air Soil Pollut 78:279–296. doi:10.1007/BF00483037

    Article  Google Scholar 

  • Decree 72/2004 (2004) Relative to the areas of special protection of the natural resources of Galicia (in Spanish). Galician Official Bulletin (DOG), 69 pp

  • Devesa-Rey R, Moldes AB, Díaz-Fierros F, Barral MT (2008a) Toxicity of Anllóns River sediment extracts using microtox and the zucconi phytotoxicity test. Bull Environ Contam Toxicol 80(3):225–230. doi:10.1007/s00128-007-9350-0

    Article  Google Scholar 

  • Devesa-Rey R, Paradelo R, Díaz-Fierros F, Barral MT (2008b) Fractionation and bioavailability of arsenic in the bed sediments of the Anllóns River (NW Spain). Water Air Soil Pollut 195:189–199

    Article  Google Scholar 

  • Devesa-Rey R, Díaz-Fierros F, Barral MT (2009a) Normalization strategies for river bed sediments: a graphical approach. Microchem J. doi:10.1016/j.microc.2008.12.004

  • Devesa-Rey R, Iglesias ML, Díaz-Fierros F, Barral MT (2009b) Total phosphorus distribution and bioavailability in the bed sediments of an Atlantic Basin (Galicia, NW Spain): spatial distribution and vertical profiles. Water Air Soil Pollut (in press)

  • Durham RW, Joshi SR (1980) Recent sedimentation rates 210Pb fluxes and particle settling velocities in Lake Huron, Laurentian Great Lakes. Chem Geol 31:53–66. doi:10.1016/0009-2541(80)90067-4

    Article  Google Scholar 

  • Elberling B, Asmund G, Kunzendorf H, Krogstad EJ (2002) Geochemical trends in metal-contaminated fiord sediments near a former lead–zinc mine in West Greenland. Appl Geochem 17(4):493–502. doi:10.1016/S0883-2927(01)00119-6

    Article  Google Scholar 

  • Environment Canada (1994) Interim sediment quality assessment values. Manuscript report no. ECD. Ecosystem Conservation Directorate, Environment Canada, Ottawa, Canada

  • Fox M, Johnson WS, Jones SR, Leah RT, Copplestone D (1999) The use of sediment cores from stable and developing salt marshes to reconstruct historical contamination profiles in the Mersey Estuary, UK. Mar Environ Res 47(4):311–329. doi:10.1016/S0141-1136(98)00123-8

    Article  Google Scholar 

  • Gascó C, Anton MP, Pozuelo M (2006) Distribution and inventories of fallout radionuclides (239 + 240Pu, 137Cs) and 210Pb to study the filling velocity of salt marshes in Doñana National Park (Spain). J Environ Radioact 89(2):159–171

    Article  Google Scholar 

  • Ghrefat H, Yusuf N (2006) Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere 65(11):2114–2121

    Article  Google Scholar 

  • Guitián F, Carballas T (1976) Técnicas de análisis de suelos (Soil analysis techniques). Pico Sacro (ed.)

  • Gupta LP, Kawahata H (2006) Downcore diagenetic changes in organic matter and implications for paleoproductivity estimates. Global Planet Change 53(1–2):122–136

    Article  Google Scholar 

  • Hanna K (2007) Adsorption of aromatic carboxylate compounds on the surface of synthesized iron oxide-coated sands. Appl Geochem 22(9):2045–2053

    Article  Google Scholar 

  • Horowitz AJ (1991) A primer on sediment-trace element chemistry. CRC Press, 2nd edn, 144

  • Ingersoll CG, Haverland PS, Brunson EL, Canfield TJ, Dwyer FJ, Henke CE, Kemble NE, Mount DR, Fox RG (1996) Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius. J Great Lakes Res 22(3):602–623

    Article  Google Scholar 

  • Irabien MJ, Cearreta A, Leorri E, Gómez J, Viguri J (2008) A 130 year record of pollution in the Suances estuary (southern Bay of Biscay): implications for environmental management. Mar Pollut Bull 56(10):1719–1727

    Article  Google Scholar 

  • Jouanneau JM, Weber O, Drago T (2002) Recent sedimentation and sedimentary budgets on the western Iberian shelf. Prog Oceanogr 52(2–4):261–275

    Article  Google Scholar 

  • Koide M, Bruland KW, Goldberg ED (1973) Th-228/Th-232 and Pb-210 geochronologies in marine and lake sediments. Geochim Cosmochim Acta 37(5):1171–1187

    Article  Google Scholar 

  • Leorri E, Horton BP, Cearreta A (2008) Development of a foraminifera-based transfer function in the Basque marshes, N. Spain: implications for sea-level studies in the Bay of Biscay. Mar Geol 251(1-2):60–74

    Article  Google Scholar 

  • Long ER, Macdonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19(1):81–97

    Article  Google Scholar 

  • Lorenzo F, Alonso A, Pellicer MJ, Pagés JL, Pérez-Arlucea M (2007) Historical analysis of heavy metal pollution in three estuaries on the north coast of Galicia (NW Spain). Environ Geol 52(4):789–802

    Article  Google Scholar 

  • Moalla SMN, Soltan ME, Rashed MN, Fawzy EM (2006) Evaluation of dilute hydrochloric acid and acid ammonium oxalate as extractants for some heavy metals from Nile River sediments. Chem Ecol 22(4):313–327

    Article  Google Scholar 

  • Müller G (1979) Schwermetalle in den Sedimenten des Rheins-Veränderungen seit. Umschav 79:133–149

    Google Scholar 

  • Murray KS (1995) Statistical comparisons of heavy-metal concentrations in river sediments. Environ Geol 27:54–58

    Article  Google Scholar 

  • NFESC (2003) Guidance for environmental background analysis, vol II: sediment

  • Persaud D, Jaagumagi R, Hayton A (1989) Development of provincial sediment quality guidelines. Ontario Ministry of the Environment, Water Resources Branch, Aquatic Biology Section, Toronto

  • Persaud D, Jaagumagui R, Hayton A (1992) Guidelines for the protection and management on aquatic sediment quality in Ontario. Ontario Ministry of the Environment and Energy, Ontario

    Google Scholar 

  • Pratson LF, Hutton EWH, Kettner AJ (2007) The impact of floods and storms on the acoustic reflectivity of the inner continental shelf: a modelling assessment. Cont Shelf Res 27(3–4):542–559

    Article  Google Scholar 

  • Radakovitch O (1995) Etude du transfert et du dépôt du matériel particulaire par le polonium 210 et le plomb 210. Application aux marges continentales du Golfe de Gascogne (NE Atlantique) et du Golfe du Lion (NW Méditerranée). Doctoral thesis, Université Perpignan, France

  • Robbins JA, Edgington DN, Kemp ALW (1978) Comparative 210Pb, 137Cs, and pollen geochronologies of sediments from Lakes Ontario and Erie. Q Res 10(2):256–278

    Article  Google Scholar 

  • Rubinos D, Barral MT, Ruíz B (2003) Phosphate and arsenate retention in sediments of the Anllóns river (northwest Spain). Water Sci Technol 48(10):159–166

    Google Scholar 

  • Sabatier P, Dezileau L, Condomines M (2008) Reconstruction of paleostorm events in a coastal lagoon (Hérault, South of France). Mar Geol 251(3–4):224–232

    Article  Google Scholar 

  • Salomons W, De Rooij NM, Kerdijk H, Bril J (1987) Sediments as sources for contaminants? Hydrobiologia 149:13–30

    Article  Google Scholar 

  • Santos-Echeandia J, Laglera LM, Prego R, van den Berg CMG (2008) Copper speciation in continental inputs to the Vigo Ria: sewage discharges versus river fluxes. Mar Pollut Bull 56(2):308–317

    Article  Google Scholar 

  • Schulte L (2002) Climatic and human influence on river systems and glacier fluctuations in southeast Spain since the Last Glacial Maximum. Q Int 93–94:85–100

    Article  Google Scholar 

  • Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Losung. Zeitschrift fur Pflanzenernahrung und Bodenkunde 105:844–850

    Google Scholar 

  • Shuman LM (1982) Separating soil iron- and manganese-oxide fractions for microelement analysis. Soil Sci Soc Am J 46(5):1099–1102

    Article  Google Scholar 

  • Snape I, Scouller RC, Stark SC, Stark J, Riddle MJ, Gore DB (2004) Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere 57(6):491–504

    Article  Google Scholar 

  • Soto-Jiménez MF, Paez-Osuna F (2008) Diagenetic processes on metals in hypersaline mudflat sediments from a subtropical saltmarsh (SE Gulf of California): postdepositional mobility and geochemical fractions. Appl Geochem 23(5):1202–1217

    Article  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39(6):611–627

    Article  Google Scholar 

  • Szefer P, Glasby GP, Stüben D (1999) Distribution of selected heavy metals and rare earth elements in surficial sediments from the Polish sector of the Vistula Lagoon. Chemosphere 39(15):2785–2798

    Article  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresuntersuchungen 33(1-4):566–575

    Article  Google Scholar 

  • Tuncel SG, Tugrul S, Topal T (2007) A case study on trace metals in surface sediments and dissolved inorganic nutrients in surface water of ölüdeniz Lagoon-Mediterranean, Turkey. Water Res 41(2):365–372

    Article  Google Scholar 

  • USEPA (2000) Guidance for data quality assessment: practical methods for data analysis

  • Vaalgamaa S, Korhola A (2004) Searching for order in chaos: a sediment stratigraphical study of a multiple-impacted bay of the Baltic Sea. Estuar Coast Shelf Sci 59:319–332

    Article  Google Scholar 

  • Viguri JR, Irabien MJ, Yusta I (2007) Physico-chemical and toxicological characterization of the historic estuarine sediments: a multidisciplinary approach. Environ Int 33(4):436–444

    Article  Google Scholar 

  • Zourarah B, Maanan M, Carruesco C, Aajjane A, Mehdi K, Conceição Freitas M (2007) Fifty-year sedimentary record of heavy metal pollution in the lagoon of Oualidia (Moroccan Atlantic coast). Estuar Coast Shelf Sci 72(1–2):359–369

    Article  Google Scholar 

Download references

Acknowledgments

The Science and Education Ministry of Spain (MEC, REN 2003-08673/CGL2007-62928) financed the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Devesa-Rey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devesa-Rey, R., Barral, M.T., Jouanneau, JM. et al. Analysis of the degree of contamination and evolution in the last 100 years of the composition of the bed sediments of the Anllóns Basin. Environ Earth Sci 61, 1401–1417 (2010). https://doi.org/10.1007/s12665-010-0457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-010-0457-y

Keywords

Navigation