Skip to main content

Advertisement

Log in

Mineralogical and geochemical composition of the subsurface sediments at the mouth of Wadi Al- Hamd, Red Sea coast, Saudi Arabia: implication for provenance and climate

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The present work is related to mineralogy and geochemistry of sedimentary successions of the modern Red Sea coastal plain at the mouth of Wadi Al-Hamd, Northern Saudi Arabia. It identifies the provenance, weathering effect, and paleoenvironment of the area. The mineralogical composition is dominated by quartz, plagioclase, and trace of feldspars, clay minerals, mica, and hornblende. Additionally, traces of non-detrital minerals including high and low Mg calcite, dolomite, halite, and anhydrite were locally detected. Four chemo-facies, dominated by three associations of element groups linked with detrital minerals, grain size properties, and biogenic products were recognized. The mineralogical and geochemical indices showed that sediments were derived from the intermediate igneous rocks at active continental margin and continental island arc settings. Weathering indices showed that the sediments were poorly weathered, consistent with the arid-to-semi-arid climate of the area. The spatial and vertical variations of mineralogical and chemical composition reflect variation depositional environments, hydraulic sorting, and the influence of coastal processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abu-Zied RH, Bantan RA (2015) Palaeoenvironment, palaeoclimate and sea-level changes in the Shuaiba Lagoon during the late Holocene (last 3.6 ka), eastern Red Sea coast. Saudi Arab Holocene 25:1301–1312. https://doi.org/10.1177/0959683615584204

    Article  Google Scholar 

  • Abu-Zied RH, Basaham AS, El Sayed MA (2013) Effect of municipal wastewaters on bottom sediment geochemistry and benthic foraminifera of two Red Sea coastal inlets. Jeddah, Saudi Arab Environ Earth Sci 68:451–469. https://doi.org/10.1007/s12665-012-1751-7

    Article  Google Scholar 

  • Agar RA (1992) The tectono-metallogenic evolution of the arabian shield. Precambrian Res 58:169–194. https://doi.org/10.1016/0301-9268(92)90118-8

    Article  Google Scholar 

  • Al-Zubieri AG, Ghandour IM, Haredy RA (2017) Controlling factors on the grain size distribution of shallow subsurface coastal sediments at the mouth of Wadi Al-Hamd, northeastern Red Sea, Saudi Arabia: JKAU. Mar Sci 27:1–17

    Google Scholar 

  • Amorosi A, Centineo MC, Dinelli E, Lucchini F, Tateo F (2002) Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of: SE Po Plain. Sed Geol 151:273–292

    Article  Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the upper miocene Kudankulam Formation, Southern India: implications for provenance, weathering, and tectonic setting. J Sedim Res 74:285–297. https://doi.org/10.1306/082803740285

    Article  Google Scholar 

  • Arz HW, Lamy F, Pätzold J (2006) A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea. Quat Res 66:432–441. https://doi.org/10.1016/j.yqres.2006.05.006

    Article  Google Scholar 

  • Bailey GN, Flemming N, King GCP, Lambeck K, Momber G, Moran L, Al-Sharekh A, VitaFinzi C (2007) Coastlines, submerged landscapes, and human evolution: the Red Sea Basin and the Farasan Islands. J Island Coast Archaeol 2:127–160. https://doi.org/10.1533/9781782421641.115

    Article  Google Scholar 

  • Bantan RA, Abu-Zied RH, Al-Dubai TA (2019) Late holocene environmental changes in a sediment core from Al-Kharrar Lagoon, eastern Red Sea Coast, Saudi Arabia. Arab J Sci Eng 44:6557–6570

    Article  Google Scholar 

  • Basaham AS, Rifaat AE, El-Sayed MA, Rasul N (2006) Sharm Obhur: environmental consequences of 20 years of uncontrolled coastal urbanization: JKAU. Mar Sci 17:129–152. https://doi.org/10.4197/mar.17-1.8

    Article  Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627

    Article  Google Scholar 

  • Bianchini G, Laviano R, Lovo S, Vaccaro C (2002) Chemical–mineralogical characterisation of clay sediments around Ferrara (Italy): a tool for an environmental analysis. Appl Clay Sci 21:165–176

    Article  Google Scholar 

  • Chester R, Voutsinou FG (1981) The initial assessment of trace metal pollution in coastal sediments. Mar Pollut Bull 12:84–91. https://doi.org/10.1016/0025-326X(81)90198-3

    Article  Google Scholar 

  • Craigie NW (2016) Chemostratigraphy of the Silurian Qusaiba member, Eastern Saudi Arabia. J Afr Earth Sci 113:12–34. https://doi.org/10.1016/j.jafrearsci.2015.10.007

    Article  Google Scholar 

  • Divi R (2001) Tectonics and mineralization in the Arabian shield and its extensions: introduction. Gondwana Res 4:129–134. https://doi.org/10.1016/S1342-937X(05)70662-6

    Article  Google Scholar 

  • Driese SG (2005) Distinguishing climate in the soil record using chemical trends in a vertisol climosequence from the Texas Coast Prairie, and application to interpreting paleozoic paleosols in the appalachian basin, USA. J Sedim Res 75:339–349. https://doi.org/10.2110/jsr.2005.027

    Article  Google Scholar 

  • Drysdall AR, D CJ (1986) Nb-Th-Zr mineralization in microgranite-microsyenite at Jabai Tawlah, Midyan region, Kingdom of Saudi Arabia. J Afr Earth Sc 4:275–288

    Google Scholar 

  • El-Sayed M (2002) Distribution and behavior of dissolved species of nitrogen and phosphorus in two coastal red sea lagoons receiving domestic sewage. J King Abdulaziz Univ Mar Sci 13:47–73. https://doi.org/10.4197/mar.13-1.3

    Article  Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924. https://doi.org/10.1130/0091-7613(1995)023%3c0921:UTEOPM%3e2.3.CO

    Article  Google Scholar 

  • Felis T, Pätzold J, Loya Y, Fine M, Nawar AH, Wefer G (2000) A coral oxygen isotope record from the northern Red Sea documenting NAO, ENSO, and North Pacific teleconnections on Middle East climate variability since the year 1750. Paleoceanography 15:679–694. https://doi.org/10.1029/1999PA000477

    Article  Google Scholar 

  • Floyd PA, Winchester JA, Park RG (1989) Geochemistry and tectonic setting discrimination using immobile elements. Earth Planet Sci Lett 27:211–218

    Article  Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks: Austin. Texas, Hemphill, p 182

  • Garcia D, Fonteilles M, Moutte J (1994) Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. J Geol 102:411–422

    Article  Google Scholar 

  • Garzanti E, Andó S, France-Lanord C, Censi P, Vignola P, Galy V, Lupker M (2011) Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth Planetary Sci Lett 302:107–120

    Article  Google Scholar 

  • Ghandour IM, Haredy RA (2019) Geochemistry of the middle-upper Miocene Bathan Formation, Al-Rehaili area, Jeddah, Saudi Arabia: provenance, tectonic setting, and paleoweathering implications. Arab J Geosci 12(14):433. https://doi.org/10.1007/s12517-019-4602-y

    Article  Google Scholar 

  • Ghandour IM, Al-Washmi HA, Haredy RA (2013) Gravel-Sized Mud Clasts on an Arid Microtidal Sandy Beach: example from the Northeastern Red Sea South Al-Wajh, Saudi Arabia. J Coast Res 291:110–117. https://doi.org/10.2112/JCOASTRES-D-12-00261.1

    Article  Google Scholar 

  • Ghandour IM, Basaham S, Al-Washmi A, Masuda H (2014) Natural and anthropogenic controls on sediment composition of an arid coastal environment: Sharm Obhur Red Sea, Saudi Arabia. Environ Monit Assess 186:1465–1484. https://doi.org/10.1007/s10661-013-3467-x

    Article  Google Scholar 

  • Ghandour IM, Al-Washmi HA, Haredy RA, Al-Zubieri AG (2016) Facies evolution and depositional model of an arid microtidal coast: example from the coastal plain at the mouth of Wadi Al-Hamd Red Sea, Saudi Arabia. Turk J Earth Sci 25:256–273. https://doi.org/10.3906/yer-1505-25

    Article  Google Scholar 

  • Ghandour I, Basaham A, Haredy R, Manaa A, Al-Rabaki K, Bawahidi K (2019) Geochemistry of the gulf of aden beach sands Al-Mukalla, Yemen: provenance and tectonic setting implications. Acta Geodynamica et Geromaterialia 16:55–70

    Article  Google Scholar 

  • Gheith AM, Washmi HAA, Nabhan AI (2005) Mineralogy and provenance of Ash Shuqayq coastal sediments, Southern Red Sea, Kingdom of Saudi Arabia: JKAU. Mar Sci 16:25–44

    Google Scholar 

  • Haig A, Chau ASY (1976) Evaluation of extraction techniques for the determination of metals in aquatic sediments. J Homepage 101:761–767

    Google Scholar 

  • Haredy R, Ghandour I (2019) Geochemistry and mineralogy of the shallow subsurface Red Sea coastal sediments, Rabigh, Saudi Arabia: provenance and paleoenvironmental implications. Turk J Earth Sci. https://doi.org/10.3906/yer-1907-8

    Article  Google Scholar 

  • Hassan M, Abu-Alam TS, Hauzenberger C, StÃwe K (2016a) Geochemical signature variation of pre-, syn-, and post-shearing intrusives within the Najd Fault System of western Saudi Arabia. Lithos 263:274–291. https://doi.org/10.1016/j.lithos.2016.06.024

    Article  Google Scholar 

  • Hassan M, Stüwe K, Abu-Alam TS, Klötzli U, Tiepolo M (2016b) Time constraints on deformation of the Ajjaj branch of one of the largest Proterozoic shear zones on Earth: the Najd fault system. Gondwana Res 34:346–362. https://doi.org/10.1016/j.gr.2015.04.009

    Article  Google Scholar 

  • Hayashi KI, Fujisawa H, Holland HD, Ohmoto H (1997) Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Acta 61:4115–4137. https://doi.org/10.1016/S0016-7037(97)00214-7

    Article  Google Scholar 

  • Hein CJ, FitzGerald DM, Milne GA, Bard K, Fattovich R (2011) Evolution of a pharaonic harbor on the Red Sea: Implications for coastal response to changes in sea level and climate. Geology 39:687–690. https://doi.org/10.1130/G31928.1

    Article  Google Scholar 

  • Hu J, Li Q, Fang N, Yang J, Ge D (2015) Geochemistry characteristics of the low permian sedimentary rocks from central uplift zone, Qiangtang Basin, Tibet: insights into source-area weathering, provenance, recycling, and tectonic setting. Arab J Geosci 8:5373–5388. https://doi.org/10.1007/s12517-014-1583-8

    Article  Google Scholar 

  • Ivanova VV, Nikol’skii PA, Tesakov AS, Basilyan AE, Belolyubskii IN, Boeskorov GG (2015) Geochemical indicators of paleoclimatic changes in the Cenozoic deposits of the Lower Aldan Basin. Geochem Int 53:358–368. https://doi.org/10.1134/S0016702915020044

    Article  Google Scholar 

  • Jackson NJ, Walsh JN, Pegram E (1984) Geology, geochemistry and petrogenesis of late Precambrian granitoids in the Central Hijaz Region of the Arabian Shield. Contrib Mineral Petrol 87:205–219. https://doi.org/10.1007/BF00373054

    Article  Google Scholar 

  • Jian X, Guan P, Zhang W, Feng F (2013) Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: implications for provenance and weathering. Chem Geol 360:74–88

    Article  Google Scholar 

  • Jonathan MP, Ram-Mohan V, Srinivasalu S (2004) Geochemical variations of major and trace elements in recent sediments, off the Gulf of Mannar, the southeast coast of India. Environ Geol 45:466–480. https://doi.org/10.1007/s00254-003-0898-7

    Article  Google Scholar 

  • Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111:111–129

    Article  Google Scholar 

  • Kroonenberg SB (1990) Geochemistry of quaternary fluvial sands from different tectonic regimes. Chem Geol 84:88–91

    Article  Google Scholar 

  • Li Y, Fan T, Zhang J, Zhang J, Wei X, Hu X, Zeng W, Fu W (2015) Geochemical changes in the Early Cambrian interval of the Yangtze Platform, South China: Implications for hydrothermal influences and paleocean redox conditions. J Asian Earth Sci 109:100–123

    Article  Google Scholar 

  • Lupker M, France-Lanord C, Galy V, Lavé J, Gaillardet J, Gajurel AP, Guilmette C, Rahman M, Singh SK, Sinha R (2012) Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochim Cosmochim Acta 84:410–432

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev Min Geochem 21:169–200

    Google Scholar 

  • Mondal MEA, Wani H, Mondal B (2012) Geochemical signature of provenance, tectonics and chemical weathering in the Quaternary flood plain sediments of the Hindon River Gangetic plain, India. Tectonophysics 566:87–94

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1997) X-Ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, p 373

    Google Scholar 

  • Moufti AMB (2009) Mineralogy and mineral chemistry of auriferous stream sediments from Al wajh area NW Saudi Arabia. Arab J Geosci 2:1–17. https://doi.org/10.1007/s12517-008-0008-y

    Article  Google Scholar 

  • Natesan U, Rajalakshmi PR, Ferrer VA (2014) Shoreline dynamics and littoral transport around the tidal inlet at Pulicat, southeast coast of India. Cont Shelf Res 80:49–56. https://doi.org/10.1016/j.csr.2014.02.018

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–716

    Article  Google Scholar 

  • Nesbitt HW, Young GM, McLennan SM, Keays RR (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J Geol 104:525–542. https://doi.org/10.1086/629850

    Article  Google Scholar 

  • Parker AG, Goudie AS, Stokes S, White K, Hodson MJ, Manning M, Kennet D (2006) A record of Holocene climate change from lake geochemical analyses in southeastern Arabia. Quat Res 66:465–476. https://doi.org/10.1016/j.yqres.2006.07.001

    Article  Google Scholar 

  • Rasul NMA (2015) Lagoon sediments of the Eastern Red Sea: distribution processes, pathways and patterns. In: Rasul, NMA, Stewart ICF (eds.) The Red Sea. (ICF Rasul, Najeeb M A and Stewart, Ed): Springer, Berlin 281–316. Doi: 10.1007/978-3-662-45201-1.

    Google Scholar 

  • Renfro WC (1973) Transfer of 65 Zn from sediments by marine polychaete worms. Mar Biol 21:305–316

    Article  Google Scholar 

  • Robinson FA, Foden JD, Collins AS (2015) Geochemical and isotopic constraints on island arc, synorogenic, post-orogenic and anorogenic granitoids in the Arabian Shield Saudi Arabia. Lithos 220–223:97–115. https://doi.org/10.1016/j.lithos.2015.01.021

    Article  Google Scholar 

  • Roddaz M, Baby P, Boucayrand C (2006) Controls on weathering and provenance in the Amazonian foreland basin : insights from major and trace element geochemistry of Neogene Amazonian sediments. Chem Geol 226:31–65. https://doi.org/10.1016/j.chemgeo.2005.08.010

    Article  Google Scholar 

  • Roy DK, Roser BP (2012) Geochemistry of Tertiary sequence in Shahbajpur-1 well Hatia Trough, Bengal Basin, Bangladesh: provenance, source weathering and province affinity. J Life Earth Sci 7:1–13

    Article  Google Scholar 

  • Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980

    Article  Google Scholar 

  • Sawyer EW (1986) The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico metasedimentary belt Superior Province, Canada. Chem Geolo 55:77–95

    Article  Google Scholar 

  • Saydam Eker Ç, Sipahi F, Gümüş MK, Özkan Ö (2018) Tracing provenance and chemical weathering changes in Ankara Stream sediments, central Turkey: Geochemical and Sr–Nd–Pb–O isotopic evidence. J Afr Earth Sci 138:367–382. https://doi.org/10.1016/j.jafrearsci.2017.11.034

    Article  Google Scholar 

  • Shaw TJ, Gieskes JM, Jahnke RA (1990) Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochim Cosmochim Acta 54:1233–1246

    Article  Google Scholar 

  • Singh P (2009) Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chem Geol 266:242–255

    Article  Google Scholar 

  • Tawfik HA, Ghandour IM, Maejima W, Armstrong-Altrin JS, Abdel-Hameed AMT (2017) Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: implications for provenance, tectonic setting and source weathering. Geol Mag 154:1–23. https://doi.org/10.1017/S0016756815000771

    Article  Google Scholar 

  • Taylor S, McLennan S (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265. https://doi.org/10.1029/95RG00262

    Article  Google Scholar 

  • Turner BW, Tréanton JA, Slatt RM (2016) The use of chemostratigraphy to refine ambiguous sequence stratigraphic correlations in marine mudrocks An example from the Woodford Shale, Oklahoma, USA. J Geol Soc 173:854–868. https://doi.org/10.1144/jgs2015-125

    Article  Google Scholar 

  • Wu W, Zheng H, Xu S, Yang J, Liu W (2013) Trace element geochemistry of riverbed and suspended sediments in the upper Yangtze River. J Geochem Exp 124:67–78

    Article  Google Scholar 

  • Yan Z, Wang Z, Yan Q, Wang T, Guo X (2012) Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling Mountains, Central China: Implications for the tectonic evolution of the Qinling Orogenic Belt. J Sedim Res 82:9–20. https://doi.org/10.2110/jsr.2012.4

    Article  Google Scholar 

  • Yang S, Li C, Yokoyama K (2006) Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: implications for sediment provenance and development history of the Changjiang River. Earth Planet Sci Lett 245(3–4):762–776. https://doi.org/10.1016/j.epsl.2006.03.042

    Article  Google Scholar 

  • Yang S, Wang Z, Guo Y, Li C, Cai J (2009) Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication. J Asian Earth Sci 35:56–65

    Article  Google Scholar 

  • Yassin MA, Abdullatif OM (2017) Chemostratigraphic and sedimentologic evolution of Wajid Group (Wajid Sandstone): an outcrop analog study from the Cambrian to Permian SW Saudi Arabia. J Afr Earth Sci 126:159–175. https://doi.org/10.1016/j.jafrearsci.2016.11.029

    Article  Google Scholar 

  • Zaid SM (2015) Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam Red Sea, Egypt: Implication for provenance, weathering and tectonic setting. J Afr Earth Sci 102:1–17. https://doi.org/10.1016/j.jafrearsci.2014.10.016

    Article  Google Scholar 

  • Zhang Y, Pe-Piper G, Piper DJW (2014) Sediment geochemistry as a provenance indicator: unravelling the cryptic signatures of polycyclic sources, climate change, tectonism and volcanism. Sedimentology 61:383–410

    Article  Google Scholar 

  • Zhou L, Kang Z, Wang Z, Peng Y, Xiao H (2017) Sedimentary geochemical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform. J Petrol Sci Eng 159:376–386

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the deanship of scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-214-150-1439). The authors, therefore, gratefully acknowledge the DSR technical and financial support. The authors are very grateful for the editor and reviewers for their constructive comments and editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaid G. Al-Zubieri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bantan, R.A., Ghandour, I.M. & Al-Zubieri, A.G. Mineralogical and geochemical composition of the subsurface sediments at the mouth of Wadi Al- Hamd, Red Sea coast, Saudi Arabia: implication for provenance and climate. Environ Earth Sci 79, 57 (2020). https://doi.org/10.1007/s12665-019-8787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8787-x

Keywords

Navigation