Skip to main content
Log in

Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone, Qiangtang Basin, Tibet: insights into source-area weathering, provenance, recycling, and tectonic setting

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

There is hot debate on contrasting hypotheses on properties of the central uplift zone, Qiangtang Basin, northern Tibet Plateau. The Qiangzi 5 Well in the Jiaomuri area, central uplift zone of northern Tibet Plateau, encounters a fine-clastic sedimentary-volcanic breccia-carbonate rock series of the Low Permian Zhanjin Formation. Study on the series is of great significance for investigating the Permian geotectonic setting of the central uplift zone. Geochemistry information of these rocks has been identified by major, trace, and rare earth element (REE) analysis. Samples’ Al2O3/SiO2 ratios range from 0.28 to 0.41, chemical index of alteration is less than 75, respectively, indicating that the source rocks are fresh and of low maturity, and are suffering from weak chemical weathering and sedimentary recycling. Samples have features such as low-medium light rare earth element (LREE) fractionation ((La/Sm) N = 1.88–4.37) and a relatively flat heavy REE (HREE) ((Gd/Yb) N = 1.07–1.56) pattern and most of them do not show any negative Eu anomaly. The samples have an Al2O3/TiO2 ration of <14, La/Sc of <2, and Co/Th in the range of 1–10. The F1-F2 and F3-F4 diagrams, etc. show that the source rocks of Zhanjin Formation’s sedimentary rocks are arc-like basalts and andesites, and proves that Zhanjin Formation sedimentary rocks might have been formed in the island arcs setting, most probably back-arc basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. J Sediment Res 74:285–297. doi:10.1306/082803740285

    Article  Google Scholar 

  • Asiedu DK, Dampare SB, Sakyi PA, Banoeng-Yakubo B, Osae S, Nyarko BJB, Manu J (2004) Geochemistry of Paleoproterozoic metasedimentary rocks from the Birim diamontiferous field, southern Ghana: implications for provenance and crustal evolution at the Archean-Proterozoic boundary. Geochem J 38:215–228

    Article  Google Scholar 

  • Bhatia MR (1984) Composition and classification of Paleozoic flysch mudrocks of eastern Australia: implications in provenance and tectonic setting interpretation. Sediment Geol 41:249–268. doi:10.1016/0037-0738(84)90065-4

    Article  Google Scholar 

  • Bhatia MR (1985) Rare earth element geochemistry of Australian Paleozoic graywackes and mud rocks: provenance and tectonic control. Sediment Geol 45:97–113. doi:10.1016/0037-0738(85)90025-9

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92(2):181–193. doi:10.1007/BF00375292

    Article  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37. doi:10.1016/0009-2541(93)90140-E

    Article  Google Scholar 

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta 59(14):2919–2940. doi:10.1016/0016-7037(95)00185-9

    Article  Google Scholar 

  • Cullers RL, Bock B, Guidotti C (1997) Elemental distribution and neodymium isotopic compositions of Silurian metasediments, western Maine, USA: redistribution of the rare earth elements. Geochim Cosmochim Acta 61:1847–1861. doi:10.1016/S0016- 7037(97)00048-3

    Article  Google Scholar 

  • Deng W, Yin J, Guo Z (1996) Basic-ultrabasic and volcanic rocks in Chabu- Shuanghu area of northern Xizang (Tibet), China. Sci China (Series D) 39(4):360–368

    Google Scholar 

  • Deng XG, Ding L, Liu XH, Yin A, Kapp P, Murphy MA, Manning CE (2002) Geochemical characteristics of the blueschists and its tectonic significance in the central Qiangtang area, Tibet. Acta Petrol Sin 18:517–525, in Chinese with English abstract

    Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosoils, with implication for paleoweathering conditions and provenance. Geology 23:921–924. doi:10.1130/0091-7613(1995)

    Article  Google Scholar 

  • Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J Geol Soc Lond 144:531–542. doi:10.1144/ gsjgs.144.4.0531

    Article  Google Scholar 

  • Floyd PA, Winchester JA, Park RG (1989) Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Res 45:203–214. doi:10.1016/0301-9268(89)90040-5

    Article  Google Scholar 

  • Girty GH, Ridge DL, Knaack C, Johnson D (1865D) AIRiyami RK (1996) Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J Sediment Res 66(1):107–118. doi:10.1306/D42682CA-2B26-11D7-8648000102C

    Google Scholar 

  • Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The “North American Shale composite”: its compilation, major and trace element characteristics. Geochimica et Cosmochinica Acta 48(12):2469–2482. doi:10.1016/0016-7037(84)90298-9

    Article  Google Scholar 

  • Gu XX, Liu JM, Zheng MH, Tang JX, Qi L (2002) Provenance and tectonic setting of the Proterozoic turbidities in Hunan, South China: geochemical evidence. J Sediment Res 72(3):393–407. doi:10.1306/081601720393

    Article  Google Scholar 

  • Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Petrol 58:820–829. doi:10.1306/212F8E77 -2B24-11D7-8648000102C1865D

    Google Scholar 

  • Jin XC (2002) Permo-Carboniferous sequences of Gondwana affinity in southwest China and their paleogeographic implications. J Asian Earth Sci 20(6):633–646. doi:10.1016/S1367-9120(10)00084-0

    Article  Google Scholar 

  • Kapp P, Yin A, Manning CE, Harrison TM, Taylor MH, Ding L (2003) Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics 22:1043. doi:10.1029/2002TC001383

    Google Scholar 

  • Li C (1987) The Longmu Tso-Shuanghu-Lancang River plate suture and the north boundary of distribution of Gondwana facies Permo-Carboniferous system in northern Xizang, China. Journal of Changchun College of Geology 17:155–166, in Chinese with English abstract

    Google Scholar 

  • Li C, Zhai QG, Dong YS, Zeng QG, Huang XP (2007) Lungmu Co-Shuanghu plate suture in the Qinghai-Tibet Plateau and records of the evolution of the Paleo-Tethys Ocean in the Qiangtang area, Tibet. Geological Bulletin of China 26(1):13–21, in Chinese with English abstract

    Google Scholar 

  • Liang X, Wang GH, Yuan GL, Liu Y (2012) Structural sequence and geochronology of the Qomo Ri accretionary complex, Central Qiangtang, Tibet: implications for the Late Triassic subduction of the Paleo-Tethys Ocean. Gondwana Research 22(2):470–481. doi:10.1016/j.gr.2011.11.012

    Article  Google Scholar 

  • Long XP, Yuan C, Sun M, Safonova I, Xiao WJ, Wang YJ (2012) Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in Junggar, NW China: insights into subduction-accretion processes in the southern Central Asian Orogenic Belt. Gondwana Research 2012(21):637–653. doi:10.1016/j.gr.2011.05.015

    Article  Google Scholar 

  • Maynard JB, Valloni R, Yu H (1982) Composition of modern deep-sea sands from arc-related basins. Geological Society of London, Special Publication 10(1):551–561. doi:10.1144/GSL.SP.1982.010.01.36

    Article  Google Scholar 

  • McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2 (2000GC000109 (electronic publication)). doi: 10.1029/2000GC000109

  • McLennan SM, Hemming SR, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Paper 284:21–40. doi:10.1130/SPE284-p21

    Article  Google Scholar 

  • Nesbitt HW (1982) GM Young (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299(5885):715–717. doi:10.1038/29971 5a0

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta 48(7):1523–1534. doi:10.1016/0016-7037(84)90408-3

    Article  Google Scholar 

  • Philpotts AR (1990) Principles of Igneous and Metamorphic Petrology. Prentice Hall, Englewood Cliffs, New Jersey

  • Pullen A, Kapp P, Gehrels GE, Vervoort JD, Ding L (2008) Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology 3G 351-354. doi: 10.1130/G24435A

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67:119–139. doi:10.1016/0009-2541(88)90010-1

    Article  Google Scholar 

  • Roser BP, Cooper RA, Nathan S, Tulloch AJ (1996) Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics 39:1–16. doi:10.1080/00288306.1996.9514690

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The Crust. Elsevier-Pergamon, Oxford pp, pp 1–64

    Google Scholar 

  • Shaw DM (1968) A review of K-Rb fractionation trends by covariance analysis. Geochim Cosmochim Acta 32:573–601. doi:10.1016/0016-7037(68)90050-1

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford, pp 1–312

    Google Scholar 

  • Wang CS, Hu CZ, Wu RZ (1987) Zhang MG (1987) Significance of the discovery of Chasang-Chabu rift in northern Xizang (Tibet). Journal of Chengdu College of Geology 14(2):33–47, in Chinese with English abstract

    Google Scholar 

  • Wu YW, Li C, Xie CM, Wang M, Hu PY (2013) Petrology, geochemistry, and tectonic significance of the metamorphic peridotites from Longmuco-Shuanghu ophiolitic mélange belt, Tibet. ACTA GEOLOGICA SINICA (English Edition) 87(2):426–439

    Article  Google Scholar 

  • Zhai QG, Li C, Cheng LR, Zhang YC (2004) Geological features of Permian ophiolite in the Jiaomuri area, Qiangtang, Tibet, and its tectonic significance. Geological Bulletin of China 23(12):1228–1230, in Chinese with English abstract

    Google Scholar 

  • Zhai QG, Li C, Huang XP (2006) Geochemistry of Permian basalt in the Jiaomuri area, central Qiangtang, Tibet. Geological Bulletin of China 25(12):1419–1427, in Chinese with English abstract

    Google Scholar 

  • Zimmermann U, Bahlburg H (2003) Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna Basin, NW Argentina. Sedimentology 50:1079–1104. doi:10.1046/j.1365-3091.2003.00595.x

    Article  Google Scholar 

Download references

Acknowledgments

All authors express their deep gratitude to the Chengdu Center, China Geological Survey for providing all the samples and offering selfless assistance all the time. This study was supported by the Chengdu Center, China Geological Survey (121011221112) and National Natural Science Foundation of China (41034853).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Li, Q., Fang, N. et al. Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone, Qiangtang Basin, Tibet: insights into source-area weathering, provenance, recycling, and tectonic setting. Arab J Geosci 8, 5373–5388 (2015). https://doi.org/10.1007/s12517-014-1583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1583-8

Keywords

Navigation