Skip to main content

Advertisement

Log in

Estimating groundwater recharge on the southern slope of Mount Kilimanjaro, Tanzania

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper used three methods namely: water-table fluctuation (WTF), soil moisture balance (SMB), and chloride mass balance (CMB) to estimate groundwater recharge in a degraded Kahe catchment located on the southern slope of Mt. Kilimanjaro, Tanzania. Three methods yielded different groundwater recharge rates. Results of the WTF method showed that recharge in the catchment was about 248.4 million m3/year, whereas those of CMB and SMB methods were 156.0 and 132.1 million m3/year, respectively. The estimated recharge rates ranged between 132.1 and 248.4 million m3/year with an average of 191.34 ± 27.80 million m3/year. Differences in the estimated rates can be attributed to the scales of measurements, assumptions in each method, and the quality of the data used. Satellite images taken in between 2000 and 2017 were used to estimate the land-use changes and their impacts on groundwater recharge in the study catchment. Analyzed satellite images showed that over the 17-year period, natural forests and bushes and shrubs decreased by 3.6 and 4.1%, while agricultural land and built-up area increased by 12.8 and 0.8%, respectively. Using SMB method, we found that these land-use changes have contributed to a decrease in groundwater recharge of about 42% between 2000 and 2017 (i.e., from 227.8 to 132.1 million m3/year). The findings from this study are useful for assessing the potential impacts of land-use change on water resources in the catchment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmad I, Verma V, Verma MK (2015) Application of curve number method for estimation of runoff potential in GIS environment. In: 2nd international conference on geological and civil engineering. pp 16–20

  • Ahmed B, Ahmed R, Zhu X (2013) Evaluation of model validation techniques in land cover dynamics. Int J Geo-Inform 2(3):577–597

    Google Scholar 

  • Aishlin PS (2006) Groundwater recharge estimation using chloride mass balance, Dry Creek Experimental Watershed, Dissertation for Award of masters at Boise State University, p 124

  • Apha A (1995) WPCF, Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Bakundukize C, Marc V, Walraevens K (2011) Estimation of groundwater recharge in Bugesera region (Burundi) using soil moisture budget approach. Geologica Belgica. 14(1–2):85–102

    Google Scholar 

  • Bazuhair AS, Wood WW (1996) Chloride mass-balance method for estimating groundwater recharge in arid areas: examples from western Saudi Arabia. J Hydrol 186(1–4):153–159

    Google Scholar 

  • Brears E, Post R, Authority NVC (2014) NVCA water table fluctuation study. Nottawasaga Valley Conservation Authority

  • Bruijnzeel LA, Sampurno SP (1990) Hydrology of moist tropical forests and effects of conversion: a state of knowledge review. Free University Amsterdam

  • Castaneda L, Rao P (2005) Comparison of methods for estimating reference evapotranspiration in Southern California. J Environ Hydrol 13(1):1–23

    Google Scholar 

  • Changming L, Jingjie Y, Kendy E (2001) Groundwater exploitation and its impact on the environment in the North China Plain. Water Int 26(2):265–272

    Google Scholar 

  • Childs E (1960) The nonsteady state of the water table in drained land. J Geophys Res 65(2):780–782

    Google Scholar 

  • Chiwa R (2012) Effects of Land Use and Land Cover Changes on the Hydrology of Weruweru-Kiladeda Sub-Catchment in Pangani River Basin, Tanzania, Dissertation for Award of master at Kenyatta University, p 128

  • Congalton RG, Green K (2008) Assessing the accuracy of remotely sensed data: principles and practices. CRC Press, New York

    Google Scholar 

  • Congedo L (2013) Semi-automatic classification plugin for QGIS. Sapienza University of Rome, Ardhi University Dar es Salaam

  • de Bont C, Komakech HC, Veldwisch GJ (2019) Neither modern nor traditional: Farmer-led irrigation development in Kilimanjaro Region, Tanzania. World Dev 116:15–27

    Google Scholar 

  • Delin GN, Healy RW, Lorenz DL, Nimmo JR (2007) Comparison of local-to regional-scale estimates of ground-water recharge in Minnesota, USA. J Hydrol 334(1–2):231–249

    Google Scholar 

  • Dewitte O, Jones A, Spaargaren O, Breuning-Madsen H, Brossard M, Dampha A, Deckers J, Gallali T, Hallett S, Jones R (2013) Harmonisation of the soil map of Africa at the continental scale. Geoderma 211(16):138–153

    Google Scholar 

  • Eastman J (2012) IDRISI Selva: Guide to GIS and image processing. Clark University, Clark Laboratories, Worcester, p 104

    Google Scholar 

  • El Mekki OA, Laftouhi N-E, Hanich L (2017) Estimate of regional groundwater recharge rate in the Central Haouz Plain, Morocco, using the chloride mass balance method and a geographical information system. Appl Water Sci 7(4):1679–1688

    Google Scholar 

  • Eriksson E, Khunakasem V (1969) Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel Coastal Plain. J Hydrol 7(2):178–197

    Google Scholar 

  • Fischer S (2013) Exploring a water balance method on recharge estimations in the Kilombero Valley, Tanzania

  • Flint AL, Flint LE, Kwicklis EM, Fabryka-Martin JT, Bodvarsson GS (2002) Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods. J Hydrogeol 10(1):180–204

    Google Scholar 

  • Foster S, Cherlet J (2014) The links between land use and groundwater—Governance provisions and management strategies to secure a ‘sustainable harvest’. Global Water Partnership, Stockholm, p 20

    Google Scholar 

  • Foster S, Tuinhof A, Garduño H (2006) Groundwater development in sub-Saharan Africa. Washington D.C, US, p 12

    Google Scholar 

  • Gitec W (2011) Groundwater assessment of the Pangani Basin, Tanzania. The Pangani basin water board (PBWB) and international union for conservation of nature (IUCN), Moshi, Tanzania

  • Gitika T, Ranjan S (2014) Estimation of Surface Runoff using NRCS Curve number procedure in Buriganga Watershed, Assam, India-A Geospatial Approach. Int Res J Earth Sci 2(5):1–7

    Google Scholar 

  • Grossmann M (2008) The Kilimanjaro Aquifer: a case study for the research project “Transboundary groundwater management in Africa”—conceptualizing cooperation on Africa’s transboundary groundwater resources. DIE Stud DIE, Bonn 11(32):87–125

    Google Scholar 

  • Grove A (1993) Water use by the Chagga on Kilimanjaro. Afr Affairs 92(368):431–448

    Google Scholar 

  • Guan H, Love AJ, Simmons CT, Makhnin O, Kayaalp A (2010) Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping. Hydrol Earth Syst Sci 14(5):801–813

    Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge

    Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. J Hydrogeol 10(1):91–109

    Google Scholar 

  • Hemp A (2001) Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro. Part II: Habitat selection. Plant Biol. 3(5):493–523

    Google Scholar 

  • Jena S, Tiwari K, Pandey A, Mishra S (2012) RS and Geographical Information System–based evaluation of distributed and composite curve number techniques. J Hydrol Eng 17(11):1278–1286

    Google Scholar 

  • Jiang P, Kitchen NR, Anderson SH, Sadler EJ, Sudduth KA (2008) Estimating plant-available water using the simple inverse yield model for claypan landscapes. Agron J 100(3):830–836

    Google Scholar 

  • Johnson AI (1967) Specific yield: compilation of specific yields for various materials. Washington D.C, US, p 71

    Google Scholar 

  • Komakech HC, de Bont C (2018) Differentiated access: challenges of equitable and sustainable groundwater exploitation in Tanzania. Water Alt 11(3):623

    Google Scholar 

  • Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge. Heise Hannover

  • Marei A, Khayat S, Weise S, Ghannam S, Sbaih M, Geyer S (2010) Estimating groundwater recharge using the chloride mass-balance method in the West Bank, Palestine. Hydrol Sci J 55(5):780–791

    Google Scholar 

  • Mato RR (2004) Groundwater pollution in urban Dar es Salaam, Tanzania: Assessing vulnerability and protection priorities, Dissertation for Award of Ph.D. at Eindhoven University of Technology, Eindhoven. p 216

  • Mbonile M, Misana MJ, Sokoni C (2003) Land use change patterns and root causes of land use change on the southern slopes of Mount Kilimanjaro, Tanzania

  • McCabe GJ, Markstrom SL (2007) A monthly water-balance model driven by a graphical user interface. Geological Survey (US)

  • Mckenzie JM, Mark BG, Thompson LG, Schotterer U, Lin P-N (2010) A hydrogeochemical survey of Kilimanjaro (Tanzania): implications for water sources and ages. J Hydrogeol 18(4):985–995

    Google Scholar 

  • Misstear BD (2000) Groundwater recharge assessment: a key component of river basin management. In: National Hydrology Seminar, pp 51–58

  • Mjemah IC Van, Camp M, Martens K, Walraevens K (2011) Groundwater exploitation and recharge rate estimation of a quaternary sand aquifer in Dar-es-Salaam area, Tanzania. Environ Earth Sci 63(3):559–569

    Google Scholar 

  • Mlingano (2006) Soils of Tanzania and their Potential for Agriculture Development. Department of Research and Training Mnistry of Agriculture, Food Security and Co-Operatives Tanga. Tanzania

  • Musa SI, Hashim M, Reba MNM (2018) Geospatial modelling of urban growth for sustainable development in the Niger Delta Region, Nigeria. Int J Rem Sens 01(43):1129–1161

    Google Scholar 

  • Naranjo G, Cruz-Fuentes T, Cabrera MD, Custodio E (2015) Estimating natural recharge by means of chloride mass balance in a volcanic aquifer: northeastern Gran Canaria (Canary Islands, Spain). Water 7(6):2555–2574

    Google Scholar 

  • Nyvall J (2002) Soil water storage capacity and available soil moisture. Abbotsford, BC

    Google Scholar 

  • Onodera S (1993) Estimation of a rapid recharge mechanism in the semi-arid Upland, Tanzania. Appl Tracers Arid Zone Hydrol 37(215):151–159

    Google Scholar 

  • Onodera S (1995) Evaluation of the groundwater recharge process in a semi-arid region of Tanzania. Appl Tracers Arid Zone Hydrol 51(232):383–391

    Google Scholar 

  • Orehova T, Vasileva T (2014) Evaluation of the atmospheric chloride deposition in the Danube hydrological zone of Bulgaria. Environ Earth Sci 72(4):1143–1154

    Google Scholar 

  • Otukei JR, Blaschke T (2010) Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Obs Geoinf 12(6):27–31

    Google Scholar 

  • Pereira AR, Pruitt WO (2004) Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agric Water Manag 66(3):251–257

    Google Scholar 

  • Røhr PC (2003) A hydrological study concerning the southern slopes of Mt Kilimanjaro, Tanzania, Dissertation for Award of Ph.D. at Norwegian University of Science and Technology, p 219

  • Røhr PC, Killingtveit Å (2003) Rainfall distribution on the slopes of Mt Kilimanjaro. Hydrol Sci J 48(1):65–77

    Google Scholar 

  • Rushton K, Eilers V, Carter R (2006) Improved soil moisture balance methodology for recharge estimation. J Hydrol 318(1–4):379–399

    Google Scholar 

  • Rwebugisa RA (2008) Groundwater recharge assessment in the Makutupora Basin, Dodoma Tanzania, dissertation for award of masters at ITC, Netherlands, p 111

  • Saghravani SR, Yusoff I, Tahir WZWM, Othman Z (2015) Comparison of water table fluctuation and chloride mass balance methods for recharge estimation in a tropical rainforest climate: a case study from Kelantan River catchment, Malaysia. Environ Earth Sci 73(8):4419–4428

    Google Scholar 

  • Sandström K (1995) The recent lake Babati floods in semi-arid Tanzania—a response to changes in land cover? Geografiska Annaler 77(1–2):35–44

    Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(1):18–39

    Google Scholar 

  • Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Change Biol 11(10):1577–1593

    Google Scholar 

  • Seth S, Bhism K, Thomas T, Jaiswal R (1997) Rainfall-Runoff Modelling for Water Availability Study in Ken River Basin Using SCS-CN Model and Remote Sensing Approach. Technical Reports, National Institute of Hydrology

  • Soini E (2002) Changing landscapes on the southern slopes of Mt. Kilimanjaro, Tanzania. An aerial photo interpretation between 1990 and 2000. Nairobi, Kenya

  • Sophocleous M (1985) The role of specific yield in ground-water recharge estimations: a numerical study. Ground Water 23(1):52–58

    Google Scholar 

  • Thornthwaite C, Mather J (1955) The water balance. Centerton: Drexel Institute of Technology, Laboratory of Climatology, Publications in climatology. vol. 8, p 1

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Institute of Technology, Centerton, NJ (EUA). Laboratory of Climatology

  • Ting C-S, Kerh T, Liao C-J (1998) Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan. Hydrogeol J 6(2):282–292

    Google Scholar 

  • Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrigat Drain Eng 131(4):316–323

    Google Scholar 

  • Trajkovic S, Kolakovic S (2009) Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manage 23(14):3057

    Google Scholar 

  • Turpie J, Ngaga Y, Karanja F (2005) Catchment Ecosystems and Downstream Water: The Value of Water Resources in the Pangani Basin, Tanzania, Lao PDR. IUCN Water, Nature and Economics Technical Paper No. 7, IUCN The World Conservation Union

  • USDA S (1985) Hydrology, National Engineering Handbook, Section 4

  • Walker D, Parkin G, Schmitter P, Gowing J, Tilahun SA, Haile AT, Yimam AY (2018) Insights from a multi-method recharge estimation comparison study. Groundwater. 57(2):245–258

    Google Scholar 

  • WMP (1977) Water Master Plan. Kilimanjaro Region, Tanzania, p 46

    Google Scholar 

  • Wood WW (1999) Use and misuse of the chloride-mass balance method in estimating ground water recharge. Groundwater 37(1):2–3

    Google Scholar 

  • Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Groundwater 33(3):458–468

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support offered by the Pangani Basin water office (PBWO) and Moshi district councils during field work for data collection. This research was funded by the Centre for Water Infrastructure and Sustainable Energy Futures (WISE-Futures), one of the East and Southern African Centres of Excellence initiated by the World Bank and hosted by the Nelson Mandela African Institution of Science and Technology, Arusha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuberi D. Lwimbo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Chloride concentration (mg/L)

ID

Type

Easting

Northing

Elev (m)

March

April

May

June

July

August

Sept

October

Zone 1

 RW01

Rain water

318062

9642909

714

6.04

8.61

8.16

3.59

0

0

5.13

2.31

 RW02

Rain water

313737

9637573

816

2.67

9.23

6.79

11.19

0

0

3.28

5.16

 RW03

Rain water

329764

9634832

811

9.03

5.36

5.52

4.12

0

0

2.18

1.44

 RW04

Rain water

323330

9639181

807

8.35

6.54

5.96

12.13

0

0

17.33

1.75

 GW01

Groundwater

324172

9632898

807

58.48

45.49

17.49

7.52

4.46

7.03

11.56

9.34

 SW01

Surface water

316410

9626956

701

22.72

17.67

46.99

62.99

37.36

58.90

96.8

78.23

ZONE 1 I

 RW05

Rain water

318354

9633294

832

9.28

7.08

5.58

8.12

0

0

11.6

1.9

 RW06

Rain water

323131

9630797

772

8.01

11.5

15.16

6.57

0

0

9.39

3.09

 RW07

Rain water

329511

9626883

719

12.16

13.41

8.28

6.05

0

0

8.65

3.6

 RW08

Rain water

319435

9627938

716

6.08

9.19

17.15

8.14

0

0

11.63

2.47

 RW09

Rain water

316306

9622995

741

11.92

6.21

13.07

18.49

0

0

6.42

1.67

 RW10

Rain water

320590

9627938

727

9.14

13.5

8.23

15.76

0

0

12.52

3.62

 GW02

Groundwater

329395

9625388

732

40.49

31.49

20.99

19.13

11.35

17.89

29.4

23.76

 GW03

Groundwater

327587

9621043

748

32.78

25.49

31.49

13.5

8.01

12.62

20.75

16.77

 GW04

Groundwater

322391

9626359

732

95.78

75.98

65.19

66.77

39.6

62.44

12.6

82.92

 GW05

Groundwater

324856

9623756

730

71.66

40.99

150.92

86.71

51.43

81.08

33.25

17.68

 SW02

Surface

318360

9629833

701

58.67

45.64

19.83

8.59

5.1

8.03

13.2

10.67

 SP01

Spring water

316410

9626956

723

58.67

14.5

16.33

27.15

16.1

25.39

41.72

33.72

 SP02

Spring water

319528

9623079

770

53.34

41.49

51.32

21.99

13.04

20.56

33.79

27.31

ZONE 1 II

 RW11

Rain water

321782

9618413

714

14.78

11.53

13.1

5.91

0

0

8.45

3.09

 RW12

Rain water

324371

9615382

733

7.09

6.29

9.42

9.52

0

0

3.6

1.69

 RW13

Rain water

329400

9614900

732

11.41

14.36

6.92

13.5

0

0

9.29

3.85

 RW14

Rain water

315356

9608629

733

7.67

4.58

13.17

11.89

0

0

6.99

1.23

 RW15

Rain water

324233

9609224

821

11.14

12.99

18.11

14.17

0

0

2.25

3.49

 GW06

Groundwater

314975

9618291

737

46.27

35.99

52.48

22.49

13.34

21.03

34.56

27.93

 GW07

Groundwater

317816

9620277

717

48.84

37.99

45.07

53.98

32.02

50.48

82.95

67.04

 GW08

Groundwater

318303

9616933

712

24.42

68.98

41.99

17.99

10.67

16.82

27.64

22.34

 GW09

Groundwater

321204

9614301

727

46.91

36.49

41.08

59.48

35.28

55.62

91.4

73.87

 GW10

Groundwater

325314

9614559

718

53.34

41.49

20.99

9.31

5.52

8.71

14.31

11.56

 GW11

Groundwater

322205

9618024

716

20.79

16.49

21.08

14.5

8.6

13.56

22.28

18.01

 GW12

Groundwater

326779

9617059

729

66.79

52.98

27.18

46.56

27.62

43.54

71.55

57.82

 GW13

Groundwater

328684

9614848

745

50.41

39.99

94.82

35.14

20.84

32.86

54

43.64

 GW14

Groundwater

325632

9613311

815

69.94

55.48

39.71

48.76

28.92

45.59

74.93

60.55

 GW15

Groundwater

320599

9609939

680

96.41

76.48

49.8

67.21

39.87

62.85

13.28

83.47

 SW03

Surface

311547

9620375

828

21.85

16.99

17.49

7.51

4.45

7.02

11.54

9.33

 SW04

Surface

312437

9605928

730

14.78

11.5

35.24

40.99

24.31

38.33

62.99

50.9

 SP03

Spring water

328043

9619530

729

28.92

22.49

40.82

17.49

10.37

16.35

26.88

21.72

Appendix 2: Digital Elevation Mode (DEM) map of Kahe catchment

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lwimbo, Z.D., Komakech, H.C. & Muzuka, A.N.N. Estimating groundwater recharge on the southern slope of Mount Kilimanjaro, Tanzania. Environ Earth Sci 78, 687 (2019). https://doi.org/10.1007/s12665-019-8690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8690-5

Keywords

Navigation