Skip to main content

Advertisement

Log in

Estimation of Groundwater Recharge in Makutupora Basin Located in a Semi-arid Region in Central Tanzania using Soil Moisture Balance (SMB) and Chloride Mass Balance (CMB) Techniques

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

The objective of this study is to assess the groundwater recharge in the Makutupora basin, Central Tanzania using the soil moisture balance (SMB) and chloride mass balance (CMB) methods. The SMB method considered the estimation of both evapotranspiration in CROPWAT 8.0 software and surface runoff by the curve number (CN) method. The CN of the basin was determined based on hydrological soil group (HSG), antecedent moisture condition (AMC) and land use type using Arc GIS 10.2. Distributed land-use maps, slope and soil texture maps, daily climatological data (e.g., precipitation, temperature, wind speed, etc.), chloride concentration in rainfall and groundwater are the basic data used in this study. Input data were prepared in the form of digital maps using GIS and remote sensing tools and finally excel models were created to compute recharge using a set of given conditions. The results indicate that the average chloride concentration measured in the groundwater samples of the study area is 282.88 mg/L; much higher than the average concentration in rainwater samples which is 3.47mg/L while the average potential evapotranspiration is 2280 mm/year with an average rainfall of 680mm/year. Runoff computed using the CN method is ranging from 7.6–246mm/year or 0.68–22%. The final recharge from SMB is ranging from 0.025–117.86mm/year or 0.006–10% of annual rainfall equivalent to an average annual volume of 41.58Mm3 while recharge from CMB ranges from 2.57–44.6mm/year or 0.38–6.56% of annual rainfall equivalent to an average annual volume of 23.85Mm3. The results show that CMB underestimated the recharge compared to the SMB method. The reason for this is thought to be caused by the high chloride concentration analysed in groundwater compared to rainfall samples which may be caused by increased chloride concentration as water passes through the rock formations (unsaturated zone) to the saturated zone. Further lack of atmospheric chloride deposition data may be another contributing factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali Rahmani, S.E., Chibane, B. and Boucefiène, A. (2017) Groundwater recharge estimation in semi-arid zone: a study case from the region of Djelfa (Algeria). Appl. Water Sci., v.7(5), pp.2255–2265. doi:https://doi.org/10.1007/s13201-016-0399-y

    Article  Google Scholar 

  • Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998) FAO Irrigation and Drainage Paper No. 56 — Crop Evapotranspiration. January 1998.

  • Aouragh, M.H., Essahlaoui, A., El Ouali, A., El Hmaidi, A. and Kamel, S. (2017) Groundwater potential of Middle Atlas plateaus, Morocco, using the fuzzy logic approach, GIS and remote sensing. Geomatics, Natural Hazards and Risk, v.8(2), pp.194–206. doi:https://doi.org/10.1080/19475705.2016.1181676

    Article  Google Scholar 

  • Arshad, A., Zhang, Z., Zhang, W. and Dilawar, A. (2020) Mapping favourable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: A case study from an agro-urban region of Pakistan. Geosci. Front., v.11(5), pp.1805–1819. doi:https://doi.org/10.1016/j.gsf.2019.12.013

    Article  Google Scholar 

  • Bakundukize, C., van Camp, M. and Walraevens, K. (2011). Estimation of Groundwater Recharge in Bugesera Region (Burundi) using Soil Moisture Budget Approach. Geologica Belgica, v.14(1–2), pp.85–102.

    Google Scholar 

  • Cooper, C.A., Hershey, R.L., Healey, J.M. and Lyles, B.F. (2013) Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method.

  • Corbari, C., Ravazzani, G., Galvagno, M., Cremonese, E. and Mancini, M. (2017) Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations. doi:https://doi.org/10.3390/s17112664

  • Crosbie, R., Jolly, I., Leaney, F., Petheram, C. and Wohling, D. (2010) Review of Australian Groundwater Recharge Studies. CSIRO: Water for a Healthy Country National Research Flagship. www.csiro.au/org/HealthyCountry.html

  • Demlie, M. (2015a) Assessment and estimation of groundwater recharge for a catchment located in a highland tropical climate in central Ethiopia using catchment soil-water balance (SWB) and chloride mass balance (CMB) techniques. Environ. Earth Sci., v.74(2), pp.1137–1150. doi:https://doi.org/10.1007/s12665-015-4099-y

    Article  Google Scholar 

  • Demlie, M. (2015b) Assessment and estimation of groundwater recharge for a catchment located in a highland tropical climate in central Ethiopia using catchment soil-water balance (SWB) and chloride mass balance (CMB) techniques. doi:https://doi.org/10.1007/s12665-015-4099-y

  • DUWASA (2015) Dodoma Urban Water Supply and Sewerage Authority. URL www.duwasa.or.tz/about (accessed 5.12.2021)

  • DUWASA (2016) Dodoma Urban Water Supply and Sewerage Authority. URL www.duwasa.or.tz/about (accessed 31.12.2021).

  • Eriksson, E. and Khunakasem, V. (1969) Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel Coastal Plain. Jour. Hydrol., v.7(2), pp.178–197. doi:https://doi.org/10.1016/0022-1694(69)90055-9

    Article  Google Scholar 

  • Ferede, M., Haile, A. T., Walker, D., Gowing, J. and Parkin, G. (2020) Multi-method groundwater recharge estimation at Eshito micro-watershed, Rift Valley Basin in Ethiopia. Hydrolog. Sci. Jour., v.65(9), pp.1596–1605. doi:https://doi.org/10.1080/02626667.2020.1762887

    Article  Google Scholar 

  • Guan, H., Love, A.J., Simmons, C.T., Makhnin, O. and Kayaalp, A.S. (2010) Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping. Hydrol. Earth Syst. Sci., 14(5), 801–813. doi:https://doi.org/10.5194/hess-14-801-2010

    Article  Google Scholar 

  • Hájková, L., Bartošová, L. and Konarová, V. (2018) Evaluation of aridity index in the Czech Republic within 1961–2015. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, v.66(5), pp.1111–1118. doi:https://doi.org/10.11118/actaun201866051111

    Article  Google Scholar 

  • Jena, S.K., Tiwari, K.N., Pandey, A. and Mishra, S.K. (2012) RS and Geographical Information System-Based Evaluation of Distributed and Composite Curve Number Techniques. Jour. Hydrol. Engg., v.17(11), pp.1278–1286. doi:https://doi.org/10.1061/(ASCE)he.1943-5584.0000651

    Article  Google Scholar 

  • Kashaigili, J.J., Mashauri, D.A. and Abdo, G. (2003) Groundwater management by using mathematical modeling: the case of the Makutupora groundwater basin in Dodoma Tanzania. Botswana Jour. Tech., v.12(1), pp.19–24. doi:https://doi.org/10.4314/bjt.v12i1.15342

    Google Scholar 

  • Kashaigili, Japhet J. (2010) Assessment of groundwater availability and its current and potential use and impacts in Tanzania. Report Prepared for the International Water Management Institute (IWMI). Sokoine University of Agriculture, Morogoro, Tanzania, December, pp.58.

    Google Scholar 

  • Kumar, C.P. (1993) Estimation of groundwater recharge using soil moisture balance approach. 247667.

  • Kumar, C.P. (2003) Estimation of Ground Water Recharge Using Soil Moisture Balance Approach. Jour. Soil.Water Conserv., Soil Conserv. Soc. India, v.2(1 & 2), pp.53–58. http://www.angelfire.com/nh/cpkumar/publication/Smbp.pdf

    Google Scholar 

  • Lorentz, S.A., Hughes, G.O. and Schulze, R.E. (2003) Techniques for Estimating Groundwater Recharge at Different Scales in Southern Africa. In: Groundwater Recharge Estimation in Southern Africa, v.64(1).

  • Lwimbo, Z.D., Komakech, H.C. and Muzuka, A.N.N. (2019) Estimating groundwater recharge on the southern slope of Mount Kilimanjaro, Tanzania. Environ. Earth Sci., v.78(24). doi:https://doi.org/10.1007/s12665-019-8690-5

  • Maréchal, J.C., Dewandel, B., Ahmed, S., Galeazzi, L. and Zaidi, F.K. (2006) Combined estimation of specific yield and natural recharge in a semiarid groundwater basin with irrigated agriculture. Jour. Hydrol., v.329(1–2), pp.281–293. doi:https://doi.org/10.1016/j.jhydrol.2006.02.022

    Article  Google Scholar 

  • Merem, E.C., Yerramilli, S., Twumasi, Y.A., Wesley, J.M., Robinson, B. and Richardson, C. (2011) The applications of GIS in the analysis of the impacts of human activities on South Texas Watersheds. Internat. Jour. Environ. Res. Public Health, v.8(6), pp.2418–2446. doi:https://doi.org/10.3390/ijerph8062418

    Article  Google Scholar 

  • Naranjo, G., et al. (2015) Estimating natural recharge by means of Chloride Mass Balance in a volcanic aquifer: Northeastern Gran Canaria (Canary Islands, Spain). Water, v.7, pp.2555–2574. doi:https://doi.org/10.3390/w7062555

    Article  Google Scholar 

  • Nkotagu, H. (1996) The groundwater geochemistry in a semi-arid, fractured crystalline basement area of Dodoma, Tanzania. Jour. African Earth Sci., v.23(4), pp.593–605. doi:https://doi.org/10.1016/S0899-5362(97)00021-3

    Article  Google Scholar 

  • Nugroho, A.R., Tamagawa, I., Riandraswari, A. and Febrianti, T. (2019) Thornthwaite-Mather water balance analysis in Tambakbayan watershed, Yogyakarta, Indonesia. 5007.

  • Onodera, S., Fellowship, T.A. and Danchi, T.K. (1993) Estimation of a rapid recharge mechanism in the semi-arid upland. IAHS Publ. v.215, pp.151–160. (Proceedings of the Yokohama Symposium).

    Google Scholar 

  • Prasanna, P.R. (2015) Earth Science: GIS Based SCS — CN Method For Estimating Runoff in Kundahpalam Watershed, Nilgiris District, Tamil Nadu. Earth Sci. Res. Jour., v.19(1), pp.59–64 doi:https://doi.org/10.15446/esrj.v19n1.44714.

    Article  Google Scholar 

  • Rivard, C., Lefebvre, R. and Paradis, D. (2014) Regional recharge estimation using multiple methods: An application in the Annapolis Valley, Nova Scotia (Canada). Environ. Earth Sci., v.71(3), pp.1389–1408. doi:https://doi.org/10.1007/s12665-013-2545-2

    Article  Google Scholar 

  • Rwebugisa, R.A. (2008). Groundwater recharge assessment in the makutupora basin, Dodoma, Tanzania. Masterarbeit Am International Institute for Geo-Information Science and Earth Observation, Enschede, MSc Dissertation.

  • Scanlon, B.R., Healy, R.W. and Cook, P.G. (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. Jour., v.10(1), pp.18–39. doi:https://doi.org/10.1007/s10040-001-0176-2

    Article  Google Scholar 

  • Scanlon, B.R., Keese, K.E., Flint, A.L., Flint, L.E., Gaye, C.B., Edmunds, W.M. and Simmers, I. (2006) Global synthesis of groundwater recharge in semiarid and arid regions. 3370(July 2005), 3335–3370. doi:https://doi.org/10.1002/hyp

  • Scanlon, B.R., Reedy, R.C., Stonestrom, D.A., Prudic, D.E. and Dennehy, K.F. (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, v.11(10), pp.1577–1593. doi:https://doi.org/10.1111/j.1365-2486.2005.01026.x

    Article  Google Scholar 

  • Seddon, D. (2019) The Climate Controls and Process of Groundwater Recharge in a Semi-Arid Tropical Environment: Evidence from the Makutapora Basin, Tanzania A thesis submitted for the degree of Doctor of Philosophy.

  • Sethi, R.R., Kumar, A. and Sharma, S.P. (2009) Quantification of groundwater recharge in a hard rock terrain of Orissa: A case study. Water Sci. Tech., v.60(5), pp.1319–1326. doi:https://doi.org/10.2166/wst.2009.403

    Article  Google Scholar 

  • Shindo, S. (1989) Study of the recharge mechanism and development of groundwater in the inland area of Tanzania. Progress Report of Japan-Tanzania Joint Research(3). Ministry of Water Dodoma.

  • Shindo, S. (1990) Study of the recharge mechanism and development of groundwater in the inland area of Tanzania. Progress Report of Japan-Tanzania Joint Research(3). Ministry of Water Dodoma.

  • Sykes, J.F. (2006) The Impact of Climate Change on Groundwater 28.1. Water Resources, pp.1–42.

  • Tailor, D. and Shrimali, N.J. (2016) Surface runoff estimation by SCS curve number method using GIS for Rupen-Khan watershed, Mehsana Distric, Gujarat. Soil, v.36(4), pp.2–6.

    Google Scholar 

  • Taylor, P., Rolland, A. and Rangarajan, R. (2012) Runoff estimation and potential recharge site delineation using analytic hierarchy process. Geocarto Internat., v.1, pp.37–41. doi.org/https://doi.org/10.1080/10106049.2012.665499

    Google Scholar 

  • Thornthwaite, C.W. (1948). An approach toward a rational classification of climate. Geogr. Rev., v.38(1), pp.55–94.

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Publ. Climatol. Lab. Climatol. Drexel. Inst Tech., v.8(1), pp.1–104

    Google Scholar 

  • Thornthwaite C.W. and Mather J.R. (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publ. Climatol. Lab. Climatol. Drexel. Inst Tech., v.10(3), pp.185–311

    Google Scholar 

  • Tienfuan, C.T. and Liao, K.C. (1998) Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan. Hydrogeol. Jour. v.6 pp.282–292.

    Article  Google Scholar 

  • Tilahun, K. and Merkel, B.J. (2009) Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia. Hydrogeol. Jour., v.17(6), pp.1443–1457. doi:https://doi.org/10.1007/s10040-009-0455-x

    Article  Google Scholar 

  • Trivedi, A., Pyasi, S.K. and Galkate, R.V. (2018) Estimation of Evapotranspiration using CROPWAT 8.0 Model for Shipra River Basin in Madhya Pradesh. Internat. Jour. Curr. Microbiol. Appl. Sci., v.7(05), pp.1248–1259. doi:https://doi.org/10.20546/ijcmas.2018.705.151

    Article  Google Scholar 

  • United States Department of Agriculture (1986) Urban Hydrology for Small Watersheds. Soil Conservation, Technical Release 55 (TR-55), 164. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Urban+Hydrology+for+Small+watersheds#1

  • Walker, D., Parkin, G., Gowing, J. and Haile, A.T. (2019) Development of a hydrogeological conceptual model for shallow aquifers in the data-scarce upper Blue Nile basin. Hydrol., v.6(2). doi:https://doi.org/10.3390/hydrology6020043

  • Walker, D., Parkin, G., Schmitter, P., Gowing, J., Tilahun, S.A., Haile, A.T., and Yimam, A.Y. (2019a) Insights From a Multi-Method Recharge Estimation Comparison Study. Groundwater, v.57(2), pp.245–258. doi:https://doi.org/10.1111/gwat.12801

    Article  Google Scholar 

  • Westenbroek, M.S., Kelson, V.A., Dripps, W.R., Hunt, R.J. and Bradbury, K.R. (2010) SWB — A Modified Thornthwaite-Mather Soil-Water-Balance Code for Estimating Groundwater Recharge. USGS Techniques and Methods 6-A31, 60p.

  • Zhou, Y. and Li, W. (2011) A review of regional groundwater flow modeling. Geosci. Front., v.2(2), pp.205–214. doi:https://doi.org/10.1016/j.gsf.2011.03.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarance Paul Kisiki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisiki, C.P., Ayenew, T. & Mjemah, I.C. Estimation of Groundwater Recharge in Makutupora Basin Located in a Semi-arid Region in Central Tanzania using Soil Moisture Balance (SMB) and Chloride Mass Balance (CMB) Techniques. J Geol Soc India 98, 1605–1614 (2022). https://doi.org/10.1007/s12594-022-2217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-2217-5

Navigation