Skip to main content
Log in

Ultrasonic tomography: non-destructive evaluation of the weathering state on a marble obelisk, considering the effects of structural properties

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The use of ultrasonic methods for a non-destructive investigation of immovable, high-ranking cultural heritage, landmark buildings, and sculptures made of natural stone, has developed into the state-of-the-art testing throughout the last 20 years. This routinely applied transmission method gives information about the rock as a whole, but no detailed information concerning the internal structures. Onsite measurements have been executed in a tomographic approach for a marble obelisk in the Neuer Garten, Potsdam (Germany) to obtain an assessment on its internal weathering conditions. Detailed mapping of macroscopically visible structures and weathering phenomena has been performed on a scale of 1:1, to prove the validity of this data. The rock properties for the same marble variety were examined under laboratory conditions to gain data on their directional dependence, influencing factors like water content and artificial weathering behaviour. These results were used to cross check the ultrasonic measurements onsite and the tests under laboratory conditions, to obtain a reliable interpretation. The ultrasonic velocity distributions measured under defined conditions, revealed a possible anisotropy between 9 and 30%, which is a basic input parameter for the calculated tomograms. The synthetic tomograms clearly show the great impact of anisotropy considering the velocity distribution modelled for the measured planes. Based on the laboratory data, an amount of 20% anisotropy was applied to the tomograms, which improved the ability to distinguish the velocity variation due to deterioration from that caused by rock fabric. The results demonstrate that the rock fabric and its anisotropy need to be considered for interpreting the tomographic investigation. Before an adequate assertion can be made, the above influences must be considered as a basis for conservation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

(adapted from Rüdrich 2003), b c-axes distribution analysed for the Prieborn marble, considering orientation of the foliation, as well as for c velocity distribution for a water-saturated Prieborn sphere, in both plots the greyish layer stands for the foliation, d is the calculated intrinsic velocity distribution, based on ODF data for a polycrystalline Prieborn marble (lower hemisphere, stereographic projection)

Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Bachmann F, Hielscher H, Jupp PE, Pantleon W, Schaeben H, Wegert E (2010) Inferential statistics of electron backscatter diffraction data from within individual crystalline grains. J Appl Crystallogr 43:1338–1355

    Article  Google Scholar 

  • Blum R, Rahm U (1998) Ultraschall-und Bohrwiderstandsmessungen. Arbeitshefte zur Denkmalpflege in Niedersachsen 15:83–86

    Google Scholar 

  • Brimblecombe P (2014) Environment and architectural stone. In: Siegesmund S, Snethlage R (eds) Stone in architecture, 5th edn. Springer, Berlin, pp 317–347

    Chapter  Google Scholar 

  • Cardarelli E, de Nardis R (2001) Seismic refraction, isotropic anisotropic seismic tomography on an ancient monument (Antonino and Faustina temple ad 141. Geophys Prospect 49:228–240

    Article  Google Scholar 

  • Dürrast H, Siegesmund S, Prasad M (1999) Die Schadensanalyse von Naturwerksteinen mittels Ultraschalldiagnostik: Möglichkeiten und Grenzen. Z. d. Deut. Geol Ges 150(2):359–374

    Google Scholar 

  • GeoTom LLC (2017) GeoTomCG software is described on the website www.geotom.net and can be purchased from GeoTom through contact information on the website. The user’s manual and a demo program are available free from GeoTom

  • Hammes DM, Peternell M (2016) FAME: Software for analysing rock microstructures. Comput Geosci 90:24–33

    Article  Google Scholar 

  • Hielscher R, Schaeben H (2008) A novel pole figure inversion method: specification of the MTEX algorithm. J Appl Crystallogr 41(6):1024–1037

    Article  Google Scholar 

  • Jackson MJ, Tweeton DR (1994) MIGRATOM—geophysical tomography using wavefront migration and fuzzy constraints. USBM RI 9497:35 pp

    Google Scholar 

  • Köhler W (1991) Untersuchungen zu Verwitterungsvorgängen an Carrara-Marmor in Potsdam-Sanssouci.- Berichte zu Forschung und Praxis der Denkmalpflege in Deutschland. Steinschäden – Steinkonservierung 2:50–53; (Hannover)

    Google Scholar 

  • Köhler W (2014) Erhaltung von Marmorskulpturen unter mitteleuropäischen Umweltbedingungen, Beiträge des 8. Konservierungswissenschaftlichen Kolloquiums in Berlin/Brandenburg. Arbeitshefte des Brandenburgischen Landesamtes für Denkmalpflege und Archäologischen Landesmuseums. Nr 32:37–44

    Google Scholar 

  • Lehmann B (2007) Seismic travel time tomography for engineering and exploration applications. EAGE Publications bv, DB Houton

    Google Scholar 

  • Leiss B, Ullemeyer K (1999) Texture characterisation of carbonate rocks and some implications for the modeling of physical anisotropies, derived from idealized texture types. Zeitschrift der deutschen geologischen Gesellschaft 150(2):259–274

    Google Scholar 

  • Leiss B, Ullemeyer K (2006) Neue Perspektiven der Texturanalytik von Gesteinen mit konventioneller Röntgenbeugung. Symposium’ Tektonik, Struktur- und Kristallingeologie’. 11

  • Lindner H, Pretzschner C, Rost L (1999) Ultraschalluntersuchungen an Bauwerken. Z. d. Deut. Geol Ges 150(2):375–386

    Google Scholar 

  • Lytle RJ, Dines KA, Laine EF, Lager DL (1978) Electromagnetic cross-borehole survey of a site proposed for an urban transit station. UCRL-52484, Lawrence Livermore Laboratory, University of California, pp 19

  • Malaga-Starzec K, Lindqvist JE, Schouenborg B (2002) Experimental study on the variation in porosity of marble as a function of temperature, vol 205. Geological Society, Special Publications, London, pp 81–88

    Google Scholar 

  • Mainprice D, Hielscher R, Schaeben H (2011) Calculating anisotropic physical properties from texture data using the MTEX open-source package. In: Prior DJ, Rutter EH, Tatham DJ (eds) Deformation mechanisms, rheology and tectonics: microstructures, mechanics and anisotropy, vol 360. Geological Society, Special Publications, London, pp 175–192. https://doi.org/10.1144/SP360.10

  • Ondrasina J, Kirchner D, Siegesmund S (2002) Freeze-thaw cycles and their influence on marble deterioration: a long-term experiment, vol 205. Geological Society, Special Publications, London, pp 9–18

    Google Scholar 

  • O’Connell RJ, Budiansky B (1974) Seismic velocities in dry and saturated cracked solids. J Geophys Res 79(35):5412–5426. https://doi.org/10.1029/JB079i035p05412

    Article  Google Scholar 

  • Popp T (1994) Der Einfluß von Gesteinsmatrix, Mikrorißgefügen und intergranularen Fluiden auf die elastischen Wellengeschwindigkeiten und die elektrische Leitfähigkeit krustenrelevanter Gesteine unter PT-Bedingungen. Diss Univ Kiel

  • Rasolofosaon PNJ, Rabbel W, Siegesmund S, Vollbrecht A (2000) Characterization of crack distribution: fabric analysis versus ultrasonic inversion. Geophys J Int 141(2):413–424

    Article  Google Scholar 

  • Rüdrich JM (2003) Gefügekontrollierte Verwitterung natürlicher und konservierter Marmore. Dissertation, University of Göttingen

  • Rüdrich J, Weiss T, Siegesmund S (2001a) Deterioration characteristics of marbles from the Marmorpalais Potsdam (Germany): a compilation. Zeitschrift der Deutschen Geologischen Gesellschaft, S. 637–663

  • Rüdrich J, Siegesmund S, Richter D (2001b) Marble columns and their state of weathering: structural evidence and ultrasonic tomography. Zeitschrift der Deutschen Geologischen Gesellschaft, S.  665–680

  • Rüdrich J, Weiss T, Siegesmund S (2004) Thermal behaviour of weathered and consolidated marbles. International Congress on Deterioration and Conservation of Stone, Stockholm, pp 495–502

    Google Scholar 

  • Rüdrich J, Siegesmund S, Weiss T (2005) Die Marmore des Marmorpalais im Neuen Garten Potsdam: Erhaltungszustand und Möglichkeiten der Konservierung. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, vol 156. Schweizerbart'sche Verlagsbuchhandlung, Germany, S. 129–139

    Google Scholar 

  • Rüdrich J, Knell C, Enseleit J, Rieffel Y, Siegesmund S (2013) Stability assessment of marble statuaries of the Schlossbrücke (Berlin, Germany) based on rock strength measurements and ultrasonic wave velocities. Environ Earth Sci. https://doi.org/10.1007/s12665-013-2246-x

    Article  Google Scholar 

  • Serabian A (1967) Influence of attenuation upon the frequency content of stress wave packet in graphite. J Acoust Soc Am 42(1967):1052–1059

    Article  Google Scholar 

  • Siedel H, Siegesmund S (2014) Characterization of stone deterioration on buildings. In: Siegesmund S, Snethlage R (eds) Stone in architecture, 5th edn. Springer, Berlin, pp 349–414

    Chapter  Google Scholar 

  • Siegesmund S (1996) The significance of rock fabrics for the geological interpretation of geophysical anisotropies, vol 85. Schweizerbart Science Publishers, Stuttgart, Germany, pp 1–123

    Google Scholar 

  • Siegesmund S, Dürrast H (2014) Physical and mechanical properties of rocks. In: Siegesmund S, Snethlage R (eds) Stone in architecture, 5th edn. Springer, Berlin, pp 199–214

    Chapter  Google Scholar 

  • Siegesmund S, Weiss T, Vollbrecht A, Ullemeyer K (1999) Marble as a natural building stone: rock fabrics, physical and mechanical properties. Zeitschrift der deutschen geologischen Gesellschaft 150(2):237–257

    Google Scholar 

  • Siegesmund S, Rüdrich J, Weiss T (2004a) Marble deterioration. In: Prikryl R (ed) Dimension stone. Taylor & Francis Group, London, pp 211–217

    Google Scholar 

  • Siegesmund S, Weiss T, Rüdrich J (2004b) Schadensmonitoring mit Ultraschalldiagnostik: Beispiel Marmorpalais in Potsdam. Restauro: Zeitschrift für Kunsttechniken Restaurierung Museumsfragen. 110. Jg., Nr. (2):98–105

    Google Scholar 

  • Snethlage R (2014) Erhaltung von Marmorskulpturen unter mitteleuropäischen Umweltbedingungen, Beiträge des 8. Konservierungswissenschaftlichen Kolloquiums in Berlin/Brandenburg. Arbeitshefte des Brandenburgischen Landesamtes für Denkmalpflege und Archäologischen Landesmuseums. Nr 32:21–30

    Google Scholar 

  • Steiger M, Charola E, Sterflinger K (2014) Weathering and deterioration. In: Siegesmund S, Snethlage R (eds) Stone in architecture, 5th edn. Springer-Verlag, Berlin Heidelberg, pp 225–316

    Chapter  Google Scholar 

  • Strohmeyer D (2003) Naturwerksteine: Gefuege und gesteinstechnische Eigenschaften. Dissertation, University of Goettingen

  • Thomsen L (2002) Understanding seismic anisotropy in exploration and exploitation. 2002 distinguished instructor short course, distinguished instructor series, No. 5, Soc. of Exploration Geophysicists, Tulsa, OK, pp. 1–27 to 1–36

    Google Scholar 

  • Weiss T, Leiss B, Oppermann H, Siegesmund S (1999) Microfabric of fresh and weathered marbles: Implications and Consequences for the reconstruction of the Marmorpalais Potsdam. Z. dt. geol. Ges., 150: 313–332; Stuttgart

    Google Scholar 

  • Weiss T, Siegesmund S, Rasolofosaon PNJ (2000) The relationship between deterioration, fabric, velocity and porosity constraint. In: Fassina V (ed) Proceedings of the 9th international congress on deterioration and conservation of stone, Vol 1. Venice, pp 215–223

  • Weiss T, Rasolofasaon PNJ, Siegesmund S (2001) Thermal microcracking in Carrara marble. Zeitschrift der Deutschen Geologischen Gesellschaft, S. 621–636

  • Weiss T, Rasolofosaon PNJ, Siegesmund S (2002) Ultrasonic velocities as a diagnostic tool for the quality assessment of marble. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies, vol 205. Geological Society, London, Special Publications, pp 149–164

  • Wendrich A (2009) Zerstörungsfreie Ortung von Anomalien in historischem Mauerwerk mit Radarund Ultraschall: Möglichkeiten und Grenzen. Bundesanstalt für Materialforschung und-prüfung (BAM)

Download references

Acknowledgements

The authors gratefully acknowledge the Stiftung Preußische Schlösser and Gärten, contributing Fig. 1 and especially Dipl. Ing. S. Kiefer for providing the necessary elevation platform and the great organisation in Potsdam. We also thank Dr. M. Stanek, for his enthusiastic support during the measurements, as well as Fraunhofer IBMT, especially K.- P. Weber and J. Oevermann for their help and support with the ultrasound equipment. For his critical, constructive, and very helpful review, we gratefully acknowledge H. Dürrast, who helped to improve this work. Furthermore, we would like to especially thank R. Hielscher, D. Mainprice, and D. Nikolayev for their help with Mtex and the textural data. The study on the obelisk has been supported by the BMBF (Marmorbild FKZ: 03VP00292), which we gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Menningen.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability”, guest edited by Siegfried Siegesmund, Luís Sousa, and Rubén Alfonso López-Doncel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menningen, J., Siegesmund, S., Tweeton, D. et al. Ultrasonic tomography: non-destructive evaluation of the weathering state on a marble obelisk, considering the effects of structural properties. Environ Earth Sci 77, 601 (2018). https://doi.org/10.1007/s12665-018-7776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7776-9

Keywords

Navigation