Skip to main content

Weathering and Deterioration

  • Chapter
  • First Online:
Stone in Architecture

Abstract

It is generally assumed that stone is one of the most durable materials because it is compared to weaker building materials, such as wood or mud. But stone can deteriorate, and many factors will affect it. The nature of the stone is critical in determining its resistance to the various deterioration factors. The most important one, salt, was identified by Herodotus, nearly two and a half millennia ago. However, salt by itself is not damaging; it requires the presence of water for its aggressiveness to become evident. And water is needed for biocolonization to occur, for freeze–thaw phenomena, and for wet-dry expansion. Control of this single factor can decrease the deterioration potential of a stone and any structure built from it significantly. This chapter aims to present a review of the most important deterioration processes and their effect on the various types of stones and rocks used by man. Among them are thermal effects, the influence of moisture, both as water vapor and in liquid state, the presence of salts, and the damages that can be expected from biocolonization. This chapter also aims at identifying the areas where more research is needed to understand the actual deterioration mechanism of the various factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertano P (2003) Methodological approaches to the study of stone alteration caused by cyanobacterial biofilms in hypogean environments. In: Koestler RJ, Koestler VH, Charola AE, Nieto Fernandez FE (eds) Art, biology and conservation: biodeterioration of works of art. The Metropolitan Museum of Art, New York, pp. 302–315

    Google Scholar 

  • Alessandrini G, Peruzzi R, Manganelli del Fá C, Vannucci S, Tampone G, Cecchi R (1979) Investigation on the degradation of stones: VIII. The working effects on the Candoglia Marble. In: Proceedings of the 3rd international congress on stone deterioration and conservation. Universitá degli Studi di Padova, Padua, pp. 411–428

    Google Scholar 

  • Allmann R, Kraus K (2003) Salze in historischem Mauerwerk. Ber Dt Min Ges Beih Eur J Mineral 15:5–6

    Google Scholar 

  • Allsopp D, Seal K, Gaylarde CC (2003) Introduction to Biodeterioration. Cambridge University Press, Cambridge

    Google Scholar 

  • Anderson RL, Ratcliffe I, Greenwell HC, Williams PA, Cliffe S, Coveney PV (2010) Clay swelling—a challenge in the oilfield. Earth Sci Rev 90:201–216

    Google Scholar 

  • Angeli M, Bigas JP, Benavente D, Menéndez B, Hébert R, David C (2007) Salt crystallization in pores: quantification and estimation of damage. Environ Geol 52:205–213

    Google Scholar 

  • Angeli M, Benavente D, Bigas JP, Menéndez B, Hébert R, David C (2008) Modification of the porous network by salt crystallization in experimentally weathered sedimentary stones. Mater Struct 41:1091–1108

    Google Scholar 

  • Arnold A (1985) Moderne alkalische Baustoffe und die probleme bei der Konservierung von Denkmälern. Bayerisches Landesamt für Denkmalpflege. Arbeitshefte 31:152–162

    Google Scholar 

  • Arnold A, Küng A (1985) Crystallization and habit of salt efflorescences on walls I. In: Félix G (ed) Proceedings of the 5th international congress on deterioration and conservation of stone. Presses Romandes, Lausanne, pp 255–267

    Google Scholar 

  • Arnold A, Zehnder K (1985) Crystallization and habit of salt efflorescences on walls II. In: Félix G (ed) Proceedings of the 5th international congress on deterioration and conservation of stone. Presses Romandes, Lausanne, pp 269–277

    Google Scholar 

  • Arnold A, Zehnder K (1989) Salt weathering on monuments. In: Zezza F (ed) The conservation of monuments in the mediterranean Basin. Grafo Edizioni, Bari, pp 31–58

    Google Scholar 

  • Arnold A, Zehnder K (1991) Monitoring wall paintings affected by soluble salts. In: Cather S (ed) The conservation of wall paintings. Getty Conservation Institute, Los Angeles, pp 103–135

    Google Scholar 

  • Attewell PB, Taylor D (1990) Time-dependent atmospheric degradation of building stone in a polluting environment. Environ Geol Water Sci 16:43–55

    Google Scholar 

  • Baedeker PA, Reddy MM, Reimann KJ, Sciammarella CA (1992) Effects of acidic deposition on the erosion of carbonate stone—experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP). Atmos Environ 26B:147–158

    Google Scholar 

  • Baer NS, Berman S (1983) Marble tombstones in national cemeteries as indicators of stone damage: General methods. In: Preprints 76th annual meeting of the APCA. Air Pollution Control Association, Atlanta, No. 83–5.7

    Google Scholar 

  • Ballirano P, Melis E (2009) Thermal behaviour and kinetics of dehydration of gypsum in air from in situ real-time laboratory parallel-beam X-ray powder diffraction. Phys Chem Min 36:391–402

    Google Scholar 

  • Bayer K (2006) Gypsum-an overlooked corrosive factor for some silicate sandstones in Czech Republic. In: Simon S and Drácky A (eds) European research on cultural heritage. State of the art studies, vol 5. Institute of Theoretical and Applied Mechanics, Prague, pp. 97–108

    Google Scholar 

  • Beaudoin JJ, MacInnis C (1974) The mechanism of frost damage in hardened cement paste. Cem Concr Res 4:139–147

    Google Scholar 

  • Becker GF, Day AL (1905) The linear force of growing crystals. Proc Wash Acad Sci 7:283–288

    Google Scholar 

  • Becker GF, Day AL (1916) Note on the linear force of growing crystals. J Geol 24:313–333

    Google Scholar 

  • Benavente D, Cueto N, Martínez Martínez J, García del Cura MA, Cañaveras JC (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52:215–224

    Google Scholar 

  • Bernabe Y (1991) Pore geometry and pressure dependence of the transport properties in sandstones. Geophysics 56:436–446

    Google Scholar 

  • Bertagnagi A, Franzini M, Gratziu C, Spampinato M (1983) Il marmocotto in natura e nei monumenti. Rend Soc It Min Petrol 39:39–46

    Google Scholar 

  • Binda L, Anzani A (1997) Structural behavior and durability of stone masonry. In: Baer NS, Snethlage R (eds) Saving our architectural heritage. Wiley, Chichester, pp 113–150

    Google Scholar 

  • Binda L, Gambarotta L, Lagomarsino S, Modena C (1999) A multilevel approach to the damage assessment and seismic improvement of masonry buildings in Italy. In: Bernardini A (ed) Seismic damage to masonry buildings. Balkema, Rotterdam, pp 170–195

    Google Scholar 

  • Binda L, Saisi A, de Vent IAE, van Hees RPJ, Naldini S (2010) Structural damage in masonry. Description and interpretation of crack patterns: basis for finding the damage causes. Rest Build Mon 16:77–98

    Google Scholar 

  • Bionda D (2006) Modelling indoor climate and salt behaviour in historical buildings: a case study. Dissertation, Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  • Bionda D, Storemyr P (2002) Modelling the behavior of salt mixtures in walls: a case study from Tenaille von Fersen. In: von Konow T (ed) The study of salt deterioration mechanisms. Decay of brick walls influenced by interior climate changes. Suomenlinnan hoitokunta, Helsinki, pp 95–101

    Google Scholar 

  • Blanchard DC, Woodcock AH (1980) The production, concentration, and vertical distribution of the sea-salt aerosol. Ann NY Acad Sci 338:330–347

    Google Scholar 

  • Bourgès A, Fehr KT, Simon S, Snethlage R (2008) Correlation between micro-structure and the macroscopic behaviour of sandstones. Rest Build Monum 14:157–166

    Google Scholar 

  • Braitsch O (1971) Salt deposits, their origin and composition. Springer, Berlin

    Google Scholar 

  • Brajer I, Klenz Larsen P (2008) The salt reduction treatment on the wall paintings in Thirsted Church. In: Salt weathering on buildings and stone sculptures. Technical University of Denmark, Lyngby, pp. 219–228

    Google Scholar 

  • Brimblecombe P, Rodhe H (1988) Air pollution—historical trends. Durability Build Mater 5:291–308

    Google Scholar 

  • Bühmann C, DeVilliers JM, Fey MV (1988) The mineralogy of four heaving clays. Appl Clay Sci 3:219–236

    Google Scholar 

  • Camuffo D, Del Monte M, Sabbioni C, Vittori O (1982) Wetting, deterioration and visual features of stone surfaces in an urban area. Atmos Environ 16:2253–2259

    Google Scholar 

  • Cardell-Fernández C, Vleugels G, Torfs K, Van Grieken R (2002) The process dominating Ca dissolution of limestone when exposed to ambient atmospheric conditions as determined by comparing dissolution models. Environ Geol 43:160–171

    Google Scholar 

  • Cecchi R, Tampone G, Vannucci S (1978) Effetti delle techniche di rifinitura della Pietra Serena fiorentina VII. Boll Ingegneri 1:3–22

    Google Scholar 

  • Cedrola ML, Charola AE (2009) Biodeterioro de materiales porosos inorgánicos. In: Charola AE, Magadan ML (eds) Manual Báscio de conservación para las Misiones Jesuíticas Guaraníes. WMF, New York, pp 52–62

    Google Scholar 

  • Charola AE (2000) Salt in the deterioration of porous materials. J Am Inst Conserv 39:327–343

    Google Scholar 

  • Charola AE (2004) Stone deterioration in historic buildings and monuments. In: Kwiatkowski D, Löfvendahl (eds) Proceedings of the 10th international congress on deterioration and conservation of stone. ICOMOS Sweden, Stockholm, pp. 3–14

    Google Scholar 

  • Charola AE, Lewin SZ (1979) Efflorescence on building stones—SEM in the characterization and elucidation of the mechanism of formation. Scan Electron Microsc 79(I):379–387

    Google Scholar 

  • Charola AE, Weber J (1992) The hydration–dehydration mechanism of sodium sulfate. In: Delgado Rodrigues J, Henriques F, Telmo Jeremias F (eds) Proceedings of the 7th international congress on deterioration and conservation of stone. LNEC, Lisbon, pp. 581–590

    Google Scholar 

  • Charola AE, Aires Barros L, Centeno SA, Basto MJ, Koestler RJ (2002) Analysis of colour traces found on the cloister of the Jeronimos monastery in Lisbon. Restor Build Monum 8:447–474

    Google Scholar 

  • Charola AE, Pühringer J, Steiger M (2007) Gypsum: a review of its role in the deterioration of building materials. Environ Geol 52:339–352

    Google Scholar 

  • Chatterji S, Jensen AD (1989) Efflorescence and breakdown of building materials. Nordic Concr Res 8:56–61

    Google Scholar 

  • Chipera SJ, Vaniman DT (2007) Experimental stability of magnesium sulfate hydrates that may be present on Mars. Geochim Cosmochim Acta 71:241–250

    Google Scholar 

  • Chkirda S, Kintrup H, Müller-Rochholz J (1999) Sorptionsmessungen von Baumberger Kalksandstein mit kapazitiven Feuchtefühlern. Berichtsband 69, 10. Feuchtetagung, Berlin, p. 18

    Google Scholar 

  • Cooper TP (1986) Saving buildings from the weather. Technol Irel 32–35

    Google Scholar 

  • Cooper BD (2008) Prevention of deterioration from salt contamination in heritage artefacts. In: Salt weathering on buildings and stone sculptures. Technical University of Denmark, Lyngby

    Google Scholar 

  • Cooper TP, O’Brien PF, Jeffrey DW (1992) Rates of deterioration of Portland limestone in an urban environment. Stud Conserv 37:228–238

    Google Scholar 

  • Correns CW, Steinborn W (1939) Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft. Z Krist A101:117–135

    Google Scholar 

  • Coussy O (2004) Poromechanics. Wiley, Chichester

    Google Scholar 

  • Crispim CA, Gaylarde CC (2004) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49:1–9. doi:10.1007/s0024800310525

    Google Scholar 

  • Cultrone G, Russo LG, Calabrò C, Uroševic M, Pezzino A (2008) Influence of pore system characteristics on limestone vulnerability: a laboratory study. Environ Geol 54:1271–1281

    Google Scholar 

  • Dadachova E, Bryan RA, Huang X, Moadel T, Schweizer AD (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE 2:e457

    Google Scholar 

  • De Clercq H (2008) The effect of other salts on the crystallization damage to stone caused by sodium sulphate. In: Salt weathering on buildings and stone sculptures. Technical University of Denmark, Lyngby, pp 307–315

    Google Scholar 

  • de Quervain F, Jenny V (1951) Verhalten der Bausteine gegen Witterungseinflüsse in der Schweiz. In: Schweizerische Geotechnische Kommission (ed) Beiträge zur Geologie der Schweiz, Geotechnische Serie, vol 30. Lieferung, Kümmerly and Frey, Geographischer Verlag, Berlin, pp 1–66

    Google Scholar 

  • de Vent IAE, Naldini S, van Hees RPJ, Binda L, Saisi A (2010) Definition of structural damage patterns: a structural damage atlas. Rest Build Mon 13:167–186

    Google Scholar 

  • Del Monte M, Sabbioni C (1984) Gypsum crusts and fly ash particles on carbonatic outcrops. Arch Meteorol Geophys Bioclimatol B 35:105–111

    Google Scholar 

  • Del Monte M, Sabbioni C (1987) A study of the patina called ‘scialbatura’ on imperial Roman marbles. Stud Conserv 32:114–121

    Google Scholar 

  • Del Monte M, Sabbioni C, Vittori O (1981) Airborne carbon particles and marble deterioration. Atmos Environ 15:645–652

    Google Scholar 

  • Del Monte M, Sabbioni C, Zappia G (1987) The origin of calcium oxalates on historical buildings, monuments and natural outcrops. Sci Total Environ 67:17–39

    Google Scholar 

  • Delgado Rodrigues J (1996) Conservation of granitic rocks with application to the megalithic monuments. Conclusion report project STEP CT90-110. In: Vicente MA, Delgado Rodrigues J, Acevedo J (eds) Degradation and conservation of granitic rocks in monuments. Protection and conservation of European cultural heritage research report No. 5. European Commission Directorate General XII. Brussels, pp 178–189

    Google Scholar 

  • Derluyn H, Poupeleer AS, Van Gemert D, Carmeliet J (2008) Salt crystallization in hydrophobic porous materials. In: De Clercq H, Charola AE (eds) Hydrophobe V. Water repellent treatment of building materials. Aedificatio, Freiburg, pp 97–108

    Google Scholar 

  • Dionisio A, Aires Barros L (2004) Fire effects on stone materials. The case of Lisbon’s Cathedral. In: Proceedings of the 6th international symposium. Conservation of monuments in the mediterranean Basin, (CD) Lisbon, pp 143–147

    Google Scholar 

  • Dionisio A, Rodrigues M, Sequeira Braga MA, Andre H, Waerenburgh JC, Rojas DP, Basto MJ, Matias MJ, Aires Barros L (2005) Study of heat induced colour modifications in limestone used in monuments. Rest Build Mon 11:199–210

    Google Scholar 

  • Doehne E (1994) In situ dynamics of sodium sulfate hydration and dehydration in stone pores: observations at high magnification using the environmental SEM. In: Zezza F, Ott H, Fassina V (eds) Conservation of monuments in the Mediterranean Basin, Proceedings of the 3rd international symposium, Venice, pp 143–150

    Google Scholar 

  • Doehne E (2002) Salt weathering: a selective review. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies, and case studies, Special publication 205. Geological Society, London, pp 51–64

    Google Scholar 

  • Drever JI (1994a) Durability of stone: mineralogical and textural perspectives. In: Krumbein WE, Brimblecombe P, Cosgrove DE, Staniforth S (eds) Durability and change. Wiley, Chichester, pp 27–39

    Google Scholar 

  • Drever JI (1994b) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58:2325–2332

    Google Scholar 

  • Ehrlich HL (2009) Geomicrobiology, 5th edn. CRC, Boca Raton 606p

    Google Scholar 

  • Espinosa-Marzal RM, Scherer GW (2008) Crystallization of sodium sulfate salts in limestones. Environ Geol 56:605–621

    Google Scholar 

  • Espinosa-Marzal RM, Scherer GW (2009) Crystallization pressure exerted by in-pore confined crystals. In: Ling HI, Smyth A, Betti R (eds) Poromechanics IV, Proceedings of the 4th Biot conference on poromechanics. DE-Stech Publications, Lancaster, pp 1013–1018

    Google Scholar 

  • Espinosa-Marzal RM, Scherer GW (2010) Mechanisms of damage by salt. In: Smith BJ, Gomez-Heras M, Viles HA, Cassar J (eds) Limestone in the built environment: present-day challenges for the preservation of the past. Geological Society, London, Special Publications 331, pp 61–77

    Google Scholar 

  • Espinosa-Marzal RM, Hamilton A, McNall M, Whitaker K, Scherer GW (2011) The chemomechanics of crystallization during rewetting of limestone impregnated with sodium sulfate. J Mater Res 26:1472–1481

    Google Scholar 

  • Evans IS (1970) Salt crystallization and rock weathering: a review. Rev Geomorph Dyn 19:153–177

    Google Scholar 

  • Everett DH (1961) The thermodynamics of frost damage to porous solids. Trans Faraday Soc 57:1541–1551

    Google Scholar 

  • Feddema JJ, Meierding TC (1987) Marble weathering and air pollution in Philadelphia. Atmos Environ 21:143–157

    Google Scholar 

  • Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454

    Google Scholar 

  • Flatt RJ, Steiger M, Scherer GW (2007) A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure. Environ Geol 52:187–203

    Google Scholar 

  • Franzen C, Mirwald PW (2004) Moisture content of natural stone: static and dynamic equilibrium with atmospheric humidity. Environ Geol 46:391–401

    Google Scholar 

  • Franzini M, Gratziu C, Spampinato M (1983) Degradazione del marmo per effetto di variazione di temperatura. Rend Soc It Min Petrol 39:47–58

    Google Scholar 

  • Fredrich JT, Wong TE (1986) Micromechanics of thermally induced cracking in three crustal rocks. J Geophys Res 91:12743–12764

    Google Scholar 

  • Fritz (1922) Steinverbiegungen als Verwitterungserscheinungen. Die Denkmalpflege 24(7):53–55

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Google Scholar 

  • Gaylarde CC, Gaylarde PM (2005) A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeterior Biodegradation 55:131–139

    Google Scholar 

  • Ginell WS (1994) The nature of changes caused by physical factors. In: Krumbein WE, Brimblecombe P, Cosgrove DE, Staniforth S (eds) Durability and change. Wiley, Chichester, pp 81–94

    Google Scholar 

  • Gómez-Heras M, Smith BJ, Fort R (2008) Influence of surface heterogeneities of building granite on its thermal response and its potential for the generation of thermoplasty. Environ Geol 56:547–560

    Google Scholar 

  • Goudie A, Viles H (1997) Salt weathering hazards. Wiley, Chichester

    Google Scholar 

  • Grassegger G (2002) Restorations of the sarcophagus of Duke Melchior von Hatzfeld-the accompanying scientific and technical investigations. Otto Graf J 13:141–154

    Google Scholar 

  • Grimmer AE (1984) A glossary of historic masonry deterioration problems and preservation treatments. Department of the interior. National Park Service Preservation Assistance Division, Washington, DC

    Google Scholar 

  • Grissom CA, Charola AE, Wachowiak MJ (2000) Measuring surface roughness: back to basics. Stud Conserv 45:73–84

    Google Scholar 

  • Grossi CM, Esbert RM, Suárez del Rio LM, Montato M, Laurenzi-Tabasso M (1997) Acoustic emission monitoring to study sodium sulphate crystallization in monumental porous carbonate stones. Stud Conserv 42:115–125

    Google Scholar 

  • Gunde-Cimerman N, Ramos J, Plemenitas A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241

    Google Scholar 

  • Hajpál M, Török A (2004) Mineralogical and color changes of quartz sandstones by heat. Environ Geol 46:311–322

    Google Scholar 

  • Hall C, Hoff WD (2002) Water transport in brick, stone and concrete. Taylor and Francis, London

    Google Scholar 

  • Hall C, Hoff WD (2007) Rising damp: capillary rise dynamics in walls. Proc Roy Soc A 463:1871–1884

    Google Scholar 

  • Halsey DP, Dews SJ, Mitchell DJ, Harris FC (1995) Real time measurements of sandstone deterioration: a microcatchment study. Build Environ 30:411–417

    Google Scholar 

  • Hamilton A, Hall C, Pel L (2008) Sodium sulfate heptahydrate: direct observation of crystallization in a porous material. J Phys D 41:212002

    Google Scholar 

  • Hardie LA, Eugster HP (1970) The evolution of closed-basin brines. Mineral Soc Am Spec Pap 3:273–290

    Google Scholar 

  • Hodgman CD, Weast RC, Shankland RS, Selby SM (eds) (1963) Handbook of chemistry and physics. The Chemical Rubber Publishing Co, Cleveland

    Google Scholar 

  • Honeyborne DB, Price CA (1977) Air pollution and the decay of limestones. Building Research Establishment. Garston, BRE Note 117/77

    Google Scholar 

  • Hosono T, Uchida E, Suda C, Ueno A, Nakagawa T (2006) Salt weathering of sandstone at the Ankor monuments, Cambodia: identification of the origin of salts using sulfur and strontium isotopes. J Archaeolog Sci 33:1541–1551

    Google Scholar 

  • Jaynes SM, Cooke RU (1987) Stone weathering in Southeast England. Atmos Environ 21:1601–1622

    Google Scholar 

  • Jerwood LC, Robinson DA, Williams RBG (1990a) Experimental frost and salt weathering of chalk I. Earth Surf Proc Land 15:611–624

    Google Scholar 

  • Jerwood LC, Robinson DA, Williams RBG (1990b) Experimental frost and salt weathering of chalk II. Earth Surf Proc Land 15:699–708

    Google Scholar 

  • Julien A (1883) The decay of building stones in New York City. Am Arch Build News 13:76–77

    Google Scholar 

  • Kemmling A, Kamper M, Flies C, Schieweck O, Hoppert M (2004) Biofilms and extracellular matrices on geomaterials. Environ Geol 46:429–435

    Google Scholar 

  • Kessler DW (1919) Physical and chemical tests on the commercial marbles of the US. NBS Technologic Paper 123. Government Printing Office, Washington, DC

    Google Scholar 

  • Kleber W (1959) Einführung in die Kristallographie. VEB Verlag Technik, Berlin

    Google Scholar 

  • Klenz Larsen P (1999) Desalination of painted brick vaults. Ph.D. thesis, The National Museum of Denmark, The Technical University of Denmark, Lyngby

    Google Scholar 

  • Klenz Larsen P (2004) Moisture measurements in Thirsted Church. J Architect Conserv 10:22–35

    Google Scholar 

  • Klenz Larsen P (2007) The salt decay of medieval bricks at a vault in Brarup Church, Denmark. Environ Geol 52:375–383

    Google Scholar 

  • Koch A, Siegesmund S (2004) The combined effect of moisture and temperature on the anomalous expansion behaviour of marble. Environ Geol 46:350–363

    Google Scholar 

  • Koestler RJ, Brimblecombe P, Camuffo D, Ginell WS, Graedel TE, Leavengood P, Petushkova J, Steiger M, Urzì C, Vergès-Belmin V, Warscheid T (1994) How do external environmental factors accelerate change? In: Krumbein WE, Brimblecombe P, Cosgrove DE, Staniforth S (ed) Durability and change. The science, responsibility, and cost of sustaining cultural heritage. Dahlem workshop reports. Wiley, Chichester, pp 149–163

    Google Scholar 

  • Kucera V, Tidblad J, Kreislova K, Knotkova D, Faller M, Reiss D, Snethlage R, Yates T, Henriksen J, Schreiner M, Melcher M, Ferm M, Lefèvre RA, Kobus J (2007) UN/ECE ICP Materials dose-response functions for the multi-pollutant situation. Water Air Soil Pollut Focus 7:249–258

    Google Scholar 

  • Lasaga AC, Soler JM, Ganor J, Burch TE, Nagy KL (1994) Chemical weathering rate laws and global geochemical cycles. Geochim Cosmochim Acta 58:2361–2386

    Google Scholar 

  • Lazzarini L, Salvadori O (1989) A reassessment of the formation of the patina called ‘scialbatura’. Stud Conserv 34:20–26

    Google Scholar 

  • Leitner H, Laue S, Siedel H (eds) (2003) Mauersalze und Architekturoberflächen. Hochschule für Bildende Künste, Dresden

    Google Scholar 

  • Lewin SZ (1974) Book review. Stud Conserv 19:249–252

    Google Scholar 

  • Lewin SZ, Charola AE (1981) Stone decay due to foreign inclusions. In: The conservation of stone II. Part A. Centro per la conservazione delle sculture all’aperto, Bologna, pp 205–217

    Google Scholar 

  • Linnow K, Zeunert A, Steiger M (2006) Investigation of sodium sulfate phase transitions in a porous material using humidity and temperature controlled X-ray diffraction. Anal Chem 78:4683–4689

    Google Scholar 

  • Lisci L, Monte M, Pacini E (2003) Lichens and higher plants on stone: a review. Int Biodeterior Biodegr 51:1–17

    Google Scholar 

  • Litvan GG (1978) Adsorption systems at temperatures below the freezing point of the adsorptive. Adv Colloid Interface Sci 9:253–302

    Google Scholar 

  • Livingston RA (1986) Evaluation of building deterioration by water runoff. In: Davis G (ed) Building performance: function, preservation, and rehabilitation. ASTM, Philadelphia, pp 181–188

    Google Scholar 

  • Livingston RA (1992) Graphical methods for examining the effects of acid rain and sulfur dioxide on carbonate stones. In: Delgado Rodrigues J, Henriques F, Telmo Jeremias F (ed) Proceedings of the 7th international congress on deterioration and conservation of stone. Laboratorio Nacional de Engenheria Civil, Lisbon, pp 375–386

    Google Scholar 

  • Madsen FT, Müller-Vonmoos M (1989) The swelling behaviour of clays. Appl Clay Sci 4:143–156

    Google Scholar 

  • Malaga-Starzec K, Lindquist JE, Björn S (2002) Experimental study on the variation in porosity of marble as function of temperature. In: Siegesmund S, Weiss, T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geol Soc Special Publication No. 205. The Geological Society, London, pp 81–88

    Google Scholar 

  • Matthes S (1987) Mineralogie. Springer, Heidelberg, p 417

    Google Scholar 

  • Matzuoka N, Moriwaki K, Hirakawa K (1996) Field experiments on physical weathering and wind erosion in an Antarctic cold desert. Earth Surf Proc Land 21:687–699

    Google Scholar 

  • Mausfeld SA, Grassegger G (1992) Abbauprozesse an Feldspäten und Tonmineralen unter den Bedingungen der Bauwerksverwitterung. Z dt geol Ges 143:23–39

    Google Scholar 

  • Mausfeld SA, Grassegger G (1994) The changing environment of pore solutions in natural building stones during immission accelerated weathering processes. In: Zezza F, Ott H, Fassina V (eds) Proceedings of the 3rd international symposium conservation of monuments in the Mediterranean Basin, Venice, pp 129–135

    Google Scholar 

  • Selbmann L, Hoog GS De, Mazzaglia, A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from the Antarctic desert. In: de Hogg GS (ed) Fungi of the Antarctic: evolution under extreme conditions. Stud Mycol 51:1–32

    Google Scholar 

  • McGreevy JP (1982) ‘Frost and salt’ weathering: further experimental results. Earth Surf Proc Land 7:475–488

    Google Scholar 

  • McGreevy JP, Smith BJ (1984) The possible role of clay minerals in salt weathering. Catena 11:169–175

    Google Scholar 

  • McKinstry HA (1965) Thermal expansion of clay minerals. Amer Mineral 50:212–222

    Google Scholar 

  • Monte M (2003) Oxalate film formation on marble specimens caused by fungus. J Cult Herit 4:255–258

    Google Scholar 

  • Mortensen H (1933) Die “Salzsprengung” und ihre Bedeutung für die regionalklimatische Gliederung der Wüsten. Petermans Mitteilungen aus Justus Perthes geographischer Anstalt 79:130–135

    Google Scholar 

  • Neumann H–H, Steiger M, Wassmann A, Dannecker W (1993) Aufbau und Ausbildung schwarzer Gipskrusten und damit zusammenhängender Gefügeschäden von Naturwerksteinen am Beispiel des Leineschlosses (Hannover). In: Snethlage R (ed) Jahresberichte steinzerfall–steinkonservierung band 3–1991. Verlag Ernst and Sohn, Berlin, pp 151–167

    Google Scholar 

  • Neumann H–H, Lork A, Steiger M, Juling H (1997) Decay patterns of weathered quartz sandstones: evidence for gypsum induced structural changes. In: Sveinsdóttir EL (ed) Proceedings of the 6th euro seminars on microscopy applied to building materials. Icelandic Building Research Institute, Reykjavik, pp 238–249

    Google Scholar 

  • Nielsen AE (1964) Kinetics of precipitation. Pergamon, Oxford

    Google Scholar 

  • Nord AG, Ericsson T (1993) Chemical analysis of thin black layers on building stone. Stud Conserv 38:25–35

    Google Scholar 

  • Nord AG, Tronner K (1991) Stone weathering. Conservation Institute of National Antiquities, Stockholm, pp 24–44

    Google Scholar 

  • O’Grady C (2005) The occurrence of rock varnish on stone and ceramic artifacts. Rev Conserv 5:35–42

    Google Scholar 

  • Ondrasina J, Kirchner D, Siegesmund S (2002) Freeze-thaw cycles and their influence on marble deterioration: a long term experiment. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies, and case studies, Special Publication 205. Geological Society, London, pp 9–18

    Google Scholar 

  • Ortega-Morales BO, Gaylarde CC, Englert GE, Gaylarde PM (2005) Analysis of salt-containing biofilms on limestone buildings of the Mayan culture at Edzna, Mexico. Geomicrobiol J 22:261–268

    Google Scholar 

  • Ottosen LM, Rörig-Dalgaard I, Klenz Larsen P, Brajer I, Bøllingstoft P, Marciniak M, Svane M (eds) (2008) Salt weathering on buildings and stone sculptures. Technical University of Denmark, Copenhagen

    Google Scholar 

  • Ožbolt J, Grassegger G, Van der Beken P, Periškić G, Reinhard HW (2008) Experimental and numerical study of hygro-thermo-mechanical properties of “Schilfsandstein” from Baden/Württemburg. Env Geol 56:535–546

    Google Scholar 

  • Pauly JP (1976) Maladie alvéolaire. Conditions de formation et d’évolution. In: Rossi Manaresi R (ed) The conservation of stone I. centro per la consrvazione delle sculture all’aperto. Bologna, pp 55–80

    Google Scholar 

  • Penazzi D, Valluzzi MR, Cardani G, Binda L, Baronio G, Modena C (2000) Behaviour of historic masonry buildings in seismic areas: lessons learned from the Umbria-March earthquake. Proceedings of the 12th international conference of IBBMac, vol 1. Universidad Politécnica, Madrid, pp 217–235

    Google Scholar 

  • Piñar U, Sterflinger K (2009) Microbes and building materials. In: Cornejo DN, Haro JL (eds) Building materials: properties, performance and applications. Nova Publishers, New York, pp 163–188

    Google Scholar 

  • Pitzer KS (1991) Ion interaction approach: theory and data correlation. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions. CRC Press, Boca Raton, pp 75–153

    Google Scholar 

  • Price CA (1978) The use of the sodium sulphate crystallisation test for determining the weathering resistance of untreated stone. In: UNESCO/RILEM international symposium, Paris, vol 3.6, pp 1–23

    Google Scholar 

  • Price CA (ed) (2000) An expert chemical model for determining the environmental conditions needed to prevent salt damage in porous materials. Protection and conservation of the European cultural heritage research report No. 11. Archetype Publications, London

    Google Scholar 

  • Price CA (2007) Predicting environmental conditions to minimise salt damage at the Tower of London: a comparison. Environ Geol 52:369–374

    Google Scholar 

  • Price CA, Brimblecombe P (1994) Preventing salt damage in porous materials. In: Preventive conservation: practice, theory and research. International Institute for Conservation, London, pp 90–93

    Google Scholar 

  • Prokos P (2008) Equilibrium conditions of marine originated salt mixtures: an ECOS application at the archaeological site of Delos, Greece. Salt weathering on buildings and stone sculptures. Technical University of Denmark, Lyngby, pp 139–148

    Google Scholar 

  • Reddy MM (1988) Acid rain damage to carbonate stone: a quantitative assessment based on the aqueous geochemistry of rainfall runoff from stone. Earth Surf Proc Land 13:335–354

    Google Scholar 

  • Reddy MM, Sherwood S, Doe B (1985) Limestone and marble dissolution by acid rain. In: Félix G (ed) Proceedings of the 5th international congress on deterioration and conservation of stone. Presses Polytechniques Romandes, Lausanne, pp 517–526

    Google Scholar 

  • Reeder R, Markgraf SA (1986) High temperature crystal chemistry of dolomite. Am Mineral 71:795–804

    Google Scholar 

  • Rijniers LA, Huinink HP, Pel L, Kopinga K (2005) Experimental evidence of crystallization pressure inside porous media. Phys Rev Lett 94:075503

    Google Scholar 

  • RILEM PEM-25 (1980) Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Mater Struct 13:175–253

    Google Scholar 

  • Rivadeneyra MA, Párraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46

    Google Scholar 

  • Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Proc Land 24:191–209

    Google Scholar 

  • Rodriguez-Navarro C, Hansen E, Sebastián E, Ginell W (1997) The role of clays in the decay of ancient Egyptian limestone sculptures. J Am Inst Cons 36:151–163

    Google Scholar 

  • Rodriguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30:1527–1534

    Google Scholar 

  • Roekens E, van Grieken R (1989) Rates of air pollution induced surface recession and material loss for a cathedral in Belgium. Atmos Environ 23:271–277

    Google Scholar 

  • Rönicke G, Rönicke R (1972) Über den Mechanismus der zerstörenden Wirkung der Luftverunreinigung am Freiburger Münster. Dt Kunst- Denkmalpfl 30:57–64

    Google Scholar 

  • Royer-Carfagni GF (1999) On the thermal degradation of marble. Int J Rock Mech Min Sci 36:119–126

    Google Scholar 

  • Ruedrich J, Siegesmund S (2007) Salt and ice crystallization in porous sandstones. Environ Geol 52:225–249

    Google Scholar 

  • Ruedrich J, Weiss T, Siegesmund S (2002) Weathering of treated marbles. Geol Soc Spec Publ 205:254–272

    Google Scholar 

  • Ruedrich J, Kirchner D, Seidel M, Siegesmund S (2005) Beanspruchungen von Naturwerksteinen durch Salz- und Eiskristallisation im Porenraum sowie hygrische Dehnungsvorgänge. Z Dt Ges Geowiss 156:58–73

    Google Scholar 

  • Ruedrich J, Bartelsen T, Dohrmann R, Siegesmund S (2011) Moisture expansion as a deterioration factor for sandstone used in buildings. Environ Earth Sci 63:1545–1564

    Google Scholar 

  • Saarela M, Alakomi HL, Suihko ML, Maunuksela L, Raaska L, Mattila-Sandholm T (2004) Heterotrophic microorganisms in air and biofilm samples from Roman catacombs, with special emphasis on actinobacteria and fungi. Int Biodet Biodegr 54:27–37

    Google Scholar 

  • Sage JD (1988) Thermal microfracturing of marble. In: Marinos PG, Kouis GC (eds) Engineering geology of ancient works, monuments and historic sites. Balkema, Rotterdam, pp 1013–1018

    Google Scholar 

  • Saiz Jimenez C (1993) Deposition of airborne organic pollutants on historic buildings. Atmos Environ 27B:77–85

    Google Scholar 

  • Salles F, Douillard JM, Denoyel R, Bildstein O, Julien M, Beurroies I, Van Damme H (2009) Hydration sequence of swelling clays: evolution of specific surface area and hydration energy. J Colloid Interface Sci 333:510–522

    Google Scholar 

  • Sánchez Pastor N, Aldushin K, Jordan G, Schmahl WW (2010) K+ -Na+ exchange in phlogopite on the scale of a single layer. Geochim Cosmochim Acta 74:1954–1962

    Google Scholar 

  • Sawdy A (2001) The kinetics of salt weathering of porous materials: stone monuments and wall paintings. Ph.D thesis, Institute of Archaeology, University College, London

    Google Scholar 

  • Sawdy A, Price CA (2005) Salt damage at Cleeve Abbey, England. Part I: a comparison of theoretical predictions and practical observations. J Cult Heritage 6:125–135

    Google Scholar 

  • Schäfer M, Steiger M (2002) A rapid method for the determination of cation exchange capacities of sandstone: preliminary data. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geological Society London, Special Publications 205:431–439

    Google Scholar 

  • Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments—an updated overview. Adv Microbiol 66:97–139

    Google Scholar 

  • Scheffer F, Schachtschabel P (1984) Lehrbuch der bodenkunde, 11th edn. Enke Verlag, Stuttgart

    Google Scholar 

  • Scherer GW (1999) Crystallization in pores. Cem Concr Res 29:1347–1358

    Google Scholar 

  • Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624

    Google Scholar 

  • Scherer GW, Valenza JJ (2004) Mechanisms of frost damage. In: Young F, Skalny J (eds) Materials science of concrete VII. The American Ceramic Society, Westerville, pp 209–246

    Google Scholar 

  • Schiavon N (1992) Decay mechanism of oolitic limestones in an urban environment: King’s College Chapel, Cambridge and St Luke’s Church, London. In: Webster RGM (ed) Stone cleaning and the nature, soiling and decay mechanisms of stone. Donhead, London, pp 258–267

    Google Scholar 

  • Schlütter F, Juling H, Steiger M (2003) Schädigung von chlorid- und nitratbelastetem Ziegelmauerwerk: Kryo-REM-Untersuchungen zur Wirkungsweise eines Salzgemisches. In: Leitner H, Laue S, Siedel H (eds) Mauersalze und architekturoberflächen. Hochschule f, Bildende Künste, pp 72–78

    Google Scholar 

  • Schmölzer A (1936) Zur entstehung der verwitterungsskulpturen an bausteinen. Chem Erde 10:479–520

    Google Scholar 

  • Sebastián E, Cultrone G, Benavente D, Linares Fernández L, Elert K, Rodriguez-Navarro C (2008) Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). J Cult Heritage 9:66–76

    Google Scholar 

  • Senkayi AL, Dixon JB, Hossner RL (1981) Transformation of chlorite to smectite through regularly in stratified intermediates. Soil Sci Soc Am J 45:650–656

    Google Scholar 

  • Sharp AD, Trudgill ST, Cooke RU, Price CA, Crabtree RW, Pickles AM, Smith DI (1982) Weathering of the balustrade on St. Paul’s Cathedral, London. Earth Surf Proc Land 7:387–389

    Google Scholar 

  • Shushakova V, Fuller ER Jr, Siegesmund S (2011) Influence of shape fabric and crystal texture on marble degradation phenomena: simulations. Environ Earth Sci 63:1587–1601. doi:10.1007/s12665-010-0744-7

    Google Scholar 

  • Siedel H (2009) Zur herkunft von salzen an bauwerken. In: Schwarz H-J, Steiger M (eds) Salzschäden an kulturgütern. Ri-Con, Hanover, pp 22–29

    Google Scholar 

  • Siedel H, von Plehwe-Leisen E, Leisen H (2008) Salt load and deterioration of sandstone at the temple of Angkor Wat, Cambodia. Proceedings of the 11th international congress on deterioration and conservation of stone. Nicolaus Copernicus University Press, Torun, pp 267–274

    Google Scholar 

  • Siegesmund S, Weiss T, Vollbrecht A, Ullemeyer K (1999) Marble as a natural building show: rock fabrics, physical and mechanical properties. Z Dt Geol Ges 150:237–257

    Google Scholar 

  • Siegesmund S, Ullemeyer K, Weiss T, Tschegg EK (2000) Physical weathering of marbles. Int J Earth Sci 89:170–182

    Google Scholar 

  • Siegesmund S, Ruedrich J, Weiss T (2004) Marble deterioration. In: Prikryl R (ed) Dimension Stone 2004. Taylor and Francis Group, London, pp 211–217

    Google Scholar 

  • Siegesmund S, Mosch S, Scheffchük C, Nikolayev DI (2008a) The bowing potential of granitic rocks: rock fabric, thermal properties and residual strain. Environ Geol 55:1437–1448

    Google Scholar 

  • Siegesmund S, Ruedrich J, Koch A (2008b) Marble bowing: comparative studies of three different public building facades. Environ Geol 56:473–494

    Google Scholar 

  • Simon S, Drdácky M (eds) (2006) Problems of salts in masonry-SALTeXPERT. European research on cultural heritage. State-of-art studies, vol 5. Institute of Theoretical and Applied Mechanics, Academy of Sciences, Prague

    Google Scholar 

  • Sippel J, Siegesmund S, Weiss T, Nitsch KH, Korsen M (2007) Decay of natural stones caused by fire damage. In: Prikryl R and Smith BJ (eds) Building stone decay: from diagnosis to conservation. geological society special publication 271. The Geological Society, London, pp 139–151

    Google Scholar 

  • Smith BJ, Magee RW, Whalley WB (1994) Breakdown patterns of quartz sandstone in a polluted urban environment, Belfast, Northern Ireland. In: Robinson DA, Williams RBG (eds) Rock Weathering and landform evolution. Wiley, Chichester, pp 131–150, 139–151

    Google Scholar 

  • Snethlage R (1984) Steinkonservierung 1979–1983. Arbeitsheft 22. Bayerisches Landesamt für Denkmalpflege, Munich

    Google Scholar 

  • Snethlage R, Wendler E (1997) Moisture cycles and sandstone degradation. In: Baer NS, Snethlage R (eds) Saving our architectural heritage: conservation of historic stone structures. Wiley, Chichester, pp 7–24

    Google Scholar 

  • Steiger M (1996) Distribution of salt mixtures in a sandstone monument: Sources, transport and crystallization properties. In: Zezza F (ed) Origin, mechanisms and effects of salts on degradation of monuments in marine and continental environments. Protection and conservation of the European cultural heritage research report no. 4, pp 241–246

    Google Scholar 

  • Steiger M (2003) Salts and crusts. In: Brimblecombe P (ed) Air pollution reviews, vol 2. The effects of air pollution on the built environment. Imperial College Press, London, pp 133–181

    Google Scholar 

  • Steiger M (2004) Influence of salts on the freezing temperature of water: implications on frost damage to porous materials. In: Kwiatkowski D, Löfvendahl R (eds) Proceedings of the 10th international congress on deterioration and conservation of stone. ICOMOS, Stockholm, pp 179–186

    Google Scholar 

  • Steiger M (2005a) Crystal growth in porous materials—I: the crystallization pressure of large crystals. J Cryst Growth 282:455–469

    Google Scholar 

  • Steiger M (2005b) Crystal growth in porous materials—II: influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481

    Google Scholar 

  • Steiger M (2005c) Salts in porous materials: thermodynamics of phase transitions, modeling and preventive conservation. Restor Build Monum 11:419–432

    Google Scholar 

  • Steiger M (2006a) Crystal Growth in porous materials: influence of supersaturation and crystal size. In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vazquez-Calvo C (eds) Heritage, weathering and conservation, vol 1. Taylor and Francis, London, pp 245–251

    Google Scholar 

  • Steiger M (2006b) Freezing of salt solutions in small pores. In: Konsta-Gdoutos MS (ed) Measuring, monitoring and modeling concrete properties. Springer, Dordrecht, pp 661–668

    Google Scholar 

  • Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H2O and the generation of stress. Geochim Cosmochim Acta 72:4291–4306

    Google Scholar 

  • Steiger M, Dannecker W (1994) Determination of wet and dry deposition af atmospheric pollutants on building stones by field exposure experiments. In: Zezza F, Ott H, Fassina V (eds) Conservation of monuments in the Mediterranean Basin. Proceedings of the 3rd international symposium, Venice, pp 171–178

    Google Scholar 

  • Steiger M, Dannecker W (1995) Hygroskopische eigenschaften und kristallisationsverhalten von salzgemischen. In: Snethlage R (ed) Jahresberichte aus dem forschungsprogramm steinzerfall—steinkonservierung. Band 5–1993. Verlag Ernst and Sohn, Berlin, pp 115–128

    Google Scholar 

  • Steiger M, Zeunert A (1996) Crystallization properties of salt mixtures—comparison of experimental results and model calculations. In: Riederer J (ed) International congress on deterioration and conservation of stone—proceedings. Möller Druck und Verlag GmbH, Berlin, pp 535–544

    Google Scholar 

  • Steiger M, Wolf F, Dannecker W (1993) Deposition and enrichment of atmospheric pollutants on building stones as determined by field exposure experiments. In: Thiel M-J (ed) Conservation of stone and other materials. E&FN SPON, London, pp 35–42

    Google Scholar 

  • Steiger M, Behlen A, Neumann H-H, Willers U, Wittenburg C (1997) Sea salt in historic buildings: deposition, transport and accumulation. In: Moropoulou A, Zezza F, Kollias E, Papachristodoulou I (eds) Proceedings of the 4th international symposium on the conservation of monuments in the mediterranean, vol 1. Rhodes, pp 325–335

    Google Scholar 

  • Steiger M, Neumann HH, Grodten T, Wittenburg C, Dannecker W (1998) Salze in natursteinmauerwerk—probenahme, messung und interpretation. In: Snethlage R (ed) Handbuch Naturwissenschaft und Denkmalpflege: Natursteinkonservierung II. Fraunhofer IRB Verlag, Stuttgart, pp 61–91

    Google Scholar 

  • Steiger M, Kiekbusch J, Nicolai A (2008a) An improved model incorporating Pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. Constr Build Mater 22:1841–1850

    Google Scholar 

  • Steiger M, Linnow K, Juling H, Gülker G, El Jarad A, Brüggerhoff S, Kirchner D (2008b) Hydration of MgSO4·H2O and generation of stress in porous materials. Cryst Growth Des 8:336–343

    Google Scholar 

  • Steiger M, Linnow K, Ehrhardt D, Rohde M (2011) Decomposition reactions of magnesium sulfate hydrates and phase equilibria in the MgSO4–H2O and Na+–Mg2+–Cl–SO4 2––H2O systems with implications for Mars. Geochim Cosmochim Acta 75:3600–3626

    Google Scholar 

  • Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124

    Google Scholar 

  • Sterflinger K (2005) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Rosa C, Gabor P (eds) Yeast handbook, vol 1. Biodiversity and ecophysiology of yeasts. Springer, New York

    Google Scholar 

  • Stockhausen N (1981) Die dilatation hochporöser festkörper bei wasseraufnahme und eisbildung, thesis. Technical University, Munich

    Google Scholar 

  • Stumm W, Wollast R (1990) Coordination chemistry of weathering: kinetics of the surface controlled dissolution of oxide minerals. Rev Geophys 28:53–69

    Google Scholar 

  • Taber S (1916) The growth of crystals under external pressure. Am J Sci 41:532–556

    Google Scholar 

  • Taber S (1929) Frost heaving. J Geol 37:428–461

    Google Scholar 

  • Taber S (1930) The mechanics of frost heaving. J Geol 38:303–317

    Google Scholar 

  • Tang IN (1997) Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance. J Geophys Res 102:1883–1893

    Google Scholar 

  • Theoulakis P, Moropoulou T (1988) Mechanisms of deterioration of the sandstone of the medieval city of Rhodes. In: Ciabach J (ed) Proceedings of the 6th international congress on deterioration and conservation OF Stone. Nicholas Copernicus University, Torun, pp 86–96

    Google Scholar 

  • Török A, Hajpál M (2005) Effect of temperature changes on the mineralogy and physical properties of sandstones. A laboratory study. Rest Build Mon 11:211–218

    Google Scholar 

  • Trudgill ST, Viles HA, Inkpen RJ, Cooke RU (1989) Remeasurement of weathering rates, St. Paul’s Cathedral, London. Earth Surf Proc Land 14:175–196

    Google Scholar 

  • Tsui N, Flatt RJ, Scherer GW (2003) Crystallization damage by sodium sulfate. J Cult Heritage 4:109–115

    Google Scholar 

  • Turkington AV, Smith BJ, Basheer PAM (2002) The effect of block retreat on subsurface temperature and moisture conditions in sandstone. In: Přikryl R, Viles H (eds) Understanding and managing stone decay. The Karolinum Press, Prague, pp 113–126

    Google Scholar 

  • UNI 11182 (2006) Beni culturali. materiali lapidei naturali ed artificiali. Descrizione della forma di alterazione—termini e definizioni. UNI, Milano

    Google Scholar 

  • Hees RPJ Van, Brendle S, Nijland TG, Haas GJLM De, Tolboom HJ (2004) Decay of Rhenish tuff in Dutch monuments. In: Kwiatkowski D, Löfvendahl (eds) Proceedings of the 10th international congress on deterioration and conservation of stone. ICOMOS Sweden, Stockholm, pp 91–98

    Google Scholar 

  • Van TT, Beck K, Al’Mukhtar M (2007) Accelerated weathering tests on two highly porous limestones. Env Geol 52:282–292

    Google Scholar 

  • Vergès-Belmin V (1994) Pseudomorphism of gypsum after calcite, a new textural feature accounting for the marble sulphation mechanism. Atmos Environ 28:295–304

    Google Scholar 

  • Vergès-Belmin V (ed) (2008) Illustrated glossary on stone deterioration patterns. Monuments and Sites XV. ICOMOS, Paris

    Google Scholar 

  • Von Konow T (2002) Test results. In: von Konow T (ed) The study of salt deterioration mechanisms. Decay of brick walls influenced by interior climate changes. Suomenlinnan Hoitokunta, Helsinki, pp 57–79

    Google Scholar 

  • Walder JS, Hallet B (1986) The physical basis of frost weathering: toward a more fundamental and unified perspective. Arct Alp Res 18:27–32

    Google Scholar 

  • Wang A, Freeman JJ, Jolliff BL (2009) Phase transition pathways of the hydrates of magnesium sulfate in the temperature range 50–5  C: implications for sulfates on Mars. J Geophys Res 114:E04010

    Google Scholar 

  • Wangler T, Scherer GW (2008) Clay swelling mechanism in clay-bearing sandstones. Env Geol 56:529–534

    Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegr 46:343–368

    Google Scholar 

  • Watchman AL (1991) Age and composition of oxalate-rich crusts in the northern territory, Australia. Stud Conserv 36:24–32

    Google Scholar 

  • Weber J (1985) Natural and artificial weathering of Austrian building stones due to air pollution. In: Félix G (ed) Proceedings of the 5th international congress on deterioration and conservation of stone. Presses Polytechniques Romandes, Lausanne, pp 527–535

    Google Scholar 

  • Weber J, Burszán R (2008) Salt-induced decay of interior walls and climate control. The case study of Virgil’s chapel. In: Salt weathering on buildings and stone sculptures. Technical University of Denmark, Lyngby, pp 257–267

    Google Scholar 

  • Weimann MB (2001) Hygrische eigenschaften von polymerbeton im vergleich zu porösen mineralischen werkstoffen im bauwesen, thesis. Technical University, Zurich, p 149

    Google Scholar 

  • Weiss T, Leiss B, Oppermann H, Siegesmund S (1999) Microfabric of fresh and weathered marbles: implications and consequences for the reconstruction of the Marmorpalais Potsdam. Z Dt geol Ges 150:313–332

    Google Scholar 

  • Weiss T, Rasolofosaon PNJ, Siegesmund S (2002a) Ultrasonic wave velocities as a diagnostic tool for the quality assessment of marble. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies, and case studies, Special Publication 205. Geological Society, London, pp 149–164

    Google Scholar 

  • Weiss T, Siegesmund S, Fuller ER (2002b) Thermal stresses via finite element modeling. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies, and case studies, Special Publication 205. Geological Society, London, pp 89–102

    Google Scholar 

  • Weiss T, Siegesmund S, Fuller E (2003) Thermal degradation of marbles: indications from finite element modelling. Build Environ 38:1251–1260

    Google Scholar 

  • Weiss T, Siegesmund S, Kirchner D, Sippel J (2004a) Insolation weathering and hygric dilatation: two competitive factors in stone degradation. Environ Geol 46:402–413

    Google Scholar 

  • Weiss T, Strohmeyer D, Kirchner D, Sippel J, Siegesmund S (2004b) Weathering of stones caused by thermal expansion, hygric properties and freeze-thaw cycles. In: Kwiatkowski D, Löfvendahl (eds) Proceedings of the 10th international congress on deterioration and conservation of stone. ICOMOS Sweden, Stockholm, pp 83–90

    Google Scholar 

  • Wendler E, Rückert-Thümling R (1993) Gefügezerstörendes verformungsverhalten bei salzbefrachteten sandsteinen unter hygrischer wechselbeantspruchung. In: Witmann FH (ed) Werkstoffwissenchaften und bausanierung, kontakt und studium 420, vol 3. Expert Verlag, Ehningen bei Böblingen, pp 11818–11830

    Google Scholar 

  • Whalley B, Smith B, Magee R (1992) Effects of particulate air pollutants on materials: Investigation of surface crust formation. In: Webster RGM (ed) Stone cleaning and the nature, soiling and decay mechanisms of stone: proceedings of the international conference held in Edinburg. Donhead, London, pp 227–234

    Google Scholar 

  • Widhalm C, Tschegg E, Eppensteiner W (1996) Anisotropic thermal expansion causes deformation of marble cladding. Perf Constr Facil ASCE 10:5–10

    Google Scholar 

  • Williams RBG, Robinson DA (1981) Weathering of sandstone by the combined action of frost and salt. Earth Surf Proc Land 6:1–9

    Google Scholar 

  • Williams RBG, Robinson DA (2001) Experimental frost weathering of sandstone by various combinations of salts. Earth Surf Proc Land 26:811–818

    Google Scholar 

  • Winkler EM (1987) Weathering and weathering rates of natural stone. Environ Geol Water Sci 9:85–92

    Google Scholar 

  • Winkler EM (1994) Stone in architecture, 3rd edn. Springer, Berlin

    Google Scholar 

  • Winkler EM (1996) Technical note: properties of marble as building veneer. Int J Rock Mech 32:215–218

    Google Scholar 

  • Winkler EM, Wilhelm EJ (1970) Salt burst by hydration pressures in architectural stone in urban atmosphere. Geol Soc Am Bull 81:567–572

    Google Scholar 

  • Winkler EM, Singer PC (1972) Crystallization pressure of salts in stone and concrete. Bull Geol Soc Am 83:3509–3514

    Google Scholar 

  • Wright JS (2002) Geomorphology and stone conservation: sandstone decay in Stoke-on-Trent. Struct Surv 20:50–61

    Google Scholar 

  • Zappia G, Sabbioni C, Gobbi G (1989) Weathering layers on stone monuments in maritime localities of northern and central Italy. In: Zezza F (ed) The conservation of monuments in the mediterranean Basin. Grafo, Brescia, pp 79–82

    Google Scholar 

  • Zehnder K (1982) Verwitterung von molassesandsteinen an bauwerken und in naturaufschlüssen. Beitr Geol Schweiz, Geotechn Ser 61. Kümmerly and Frey, Bern

    Google Scholar 

  • Zehnder K, Arnold A (1989) Crystal growth in salt efflorescence. J Crystal Growth 97:513–521

    Google Scholar 

  • Zehnder K, Schoch O (2009) Efflorescence of mirabilite, epsomite and gypsum traced by automated monitoring on-site. J Cult Heritage 10:319–330

    Google Scholar 

  • Zeisig A, Siegesmund S, Weiss T (2002) Thermal expansion and its control on the durability of marbles. In: Siegesmund S, Weiss, T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geological society special publication No. 205. The Geological Society, London, pp 65–80

    Google Scholar 

  • Zezza F, Macrì F (1995) Marine aerosol and stone decay. Sci Total Environ 167:123–143

    Google Scholar 

  • Zezza F, Pascua NG, Macrí F (1995) Rising damp and soluble salts in the weathering processes of biocalcarenites. Case study of cathedrals, churches and buildings of Leccese baroque. In: Preservation and restoration of cultural heritage, Proceedings of the 1995 LCP congress. Montreux, pp 161–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Steiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steiger, M., Charola, A.E., Sterflinger, K. (2014). Weathering and Deterioration. In: Siegesmund, S., Snethlage, R. (eds) Stone in Architecture. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45155-3_4

Download citation

Publish with us

Policies and ethics