Skip to main content

Advertisement

Log in

The Starzach site in Southern Germany: a site with naturally occurring CO2 emissions recovering from century-long gas mining as a natural analog for a leaking CCS reservoir

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In this paper, we present the Starzach site, a region featuring numerous natural CO2 emission spots, such as mofettes, that reappeared after a longer period of extensive industrial CO2 mining. We discuss the results of a detailed literature study on the geological setting and the activities related to the gas mining in combination with own measurements to introduce the site as an example on how gas leakage from an insecure CCS reservoir could manifest at the surface. The site is in particular interesting for such investigations as the CO2 emissions started to replenish after the end of the CO2 mining and offers the unique possibility to investigate an increase in degassing activity as it might be expected for an active CCS site where leakage is suspected. Based on the geological setting and soil, gas emission, and isotope investigations, we further discuss the source of the CO2 emission and the gas ascent to the ground surface via deep-reaching faults, latter being so far excluded by previous work. The combination of our extensive literature review and recent field investigations allowed us to draw new geological conclusions for the site that were under discussion for a long time and to give insight into the site’s potential for CCS-related analog studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aiuppa A, Bertagnini A, Métrich N, Moretti R, Di Muro A, Liuzzo M, Tamburello G (2010) A model of degassing for Stromboli volcano. Earth Planet Sci Lett 295:195–204. https://doi.org/10.1016/j.epsl.2010.03.040

    Article  Google Scholar 

  • Althaus E (1982) Geochemical problems in fluid-rock interaction. In: Haenel R (ed) The Urach Geothermal Project. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, pp 123–134

    Google Scholar 

  • Bachmann GH, Müller M (1992) Sedimentary and structural evolution of the German Molasse Basin. Eclogae Geol Helv 85:519–530

    Google Scholar 

  • Bachmann GH, Müller M, Weggen K (1987) Evolution of the Molasse Basin (Germany, Switzerland). Tectonophysics 137:77–92. https://doi.org/10.1016/0040-1951(87)90315-5

    Article  Google Scholar 

  • Ballentine CJ, Burnard PG (2002) Production, release and transport of noble gases in the continental crust. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Reviews in mineralogy and geochemistry, vol 47. Mineralogical Society of America, Washington, pp 481–538. https://doi.org/10.2138/rmg.2002.47.12

    Google Scholar 

  • Bartz J (1961) Die Entwicklung des Flußnetzes in Südwestdeutschland. Jahreshefte des geologischen Landesamtes Baden-Württemberg 4:127–135

    Google Scholar 

  • Becken M, Ritter O, Park SK, Bedrosian PA, Weckmann U, Weber M (2008) A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California. Geophys J Int 173:718–732. https://doi.org/10.1111/j.1365-246X.2008.03754.x

    Article  Google Scholar 

  • Bense FA, Jaehne-Klingberg F (2017) Storage potentials in the deeper subsurface of the Central German North Sea. In: Dixon T, Laloui L, Twinning S (eds) 13th International conference on greenhouse gas control technologies, Ghgt-13, vol 114. Energy Procedia, pp 4595–4622. https://doi.org/10.1016/j.egypro.2017.03.1580

  • Bibus E, Wesler J (1995) The middle Neckar as an example of fluvio-morphological processes during the Middle and Late Quaternary period. Zeitschrift für Geomorphologie 100:15–26

    Google Scholar 

  • Blank JG, Brooker RA (1994) Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon-isotope behavior. Volatiles Magmas 30:157–186

    Google Scholar 

  • Blaser PC (1987) Vorkommen von Methan und Helium in CO2-Gasen des Kohlensäuregebietes Eyach-Imnau (MTBL 7518 und 7519)-Ein Beitrag zur gasgeochemischen Feld- und Labormethodik. Diploma Thesis, Eberhard Karls Universität Tübingen

  • Blume HP, Felix-Henningsen P (2009) Reductosols: natural soils and technosols under reducing conditions without an aquic moisture regime. J Plant Nutr Soil Sci Z Pflanzenernahr Bodenkd 172:808–820. https://doi.org/10.1002/jpln.200800125

    Article  Google Scholar 

  • Bond CE et al (2017) The physical characteristics of a CO2 seeping fault: the implications of fracture permeability for carbon capture and storage integrity. Int J Greenh Gas Control 61:49–60. https://doi.org/10.1016/j.ijggc.2017.01.015

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Koch U, Strauch G (2011) Monthly monitoring of gas and isotope compositions in the free gas phase at degassing locations close to the Novy Kostel focal zone in the western Eger Rift, Czech Republic. Chem Geol 290:163–176. https://doi.org/10.1016/j.chemgeo.2011.09.012

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Niedermann S, Strauch G (2013) Indications for the existence of different magmatic reservoirs beneath the Eifel area (Germany): A multi-isotope (C, N, He, Ne, Ar) approach. Chem Geol 356:193–208. https://doi.org/10.1016/j.chemgeo.2013.08.013

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Strauch G (2014) Seismically triggered anomalies in the isotope signatures of mantle-derived gases detected at degassing sites along two neighboring faults in NW Bohemia, central Europe J Geophys Res-Solid. Earth 119:5613–5632. https://doi.org/10.1002/2014jb011044

    Google Scholar 

  • Brockamp O, Schlegel A, Clauer N (2011) Mesozoic hydrothermal impact on Rotliegende and Bunter immature sandstones of the High Rhine trough and its adjacent eastern area (southern Black Forest, Germany). Sediment Geol 234:76–88. https://doi.org/10.1016/j.sedgeo.2010.12.001

    Article  Google Scholar 

  • Brunner H, Hinkelbein K, Simon T (1988) Geologie und Tektonik im Gebiet von Ellenweiler (Gmde. Oppenweiler, Rems-Murr-Kreis). Jahreshefte des geologischen Landesamtes Baden-Württemberg 30:167–200

    Google Scholar 

  • Bundschuh J (1986a) Teil A: Kartierung im südwestdeutschen Keuperbergland bei Heiligenzimmern unter besonderer Berücksichtigung der Chronostratigraphie im mittleren Mittelkeuper. Diploma Thesis, Eberhard Karls Universität Tübingen

  • Bundschuh J (1986b) Teil B: Hydrogeologische und hydrochemische Untersuchungen zur Subrosion des Steinsalzlagers im Mittleren Muschelkalk von Südwestwürttemberg zwischen Neckar, Eyach und Stunzach. Diploma Thesis, Eberhard Karls Universität Tübingen

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028

    Article  Google Scholar 

  • Calais E, Nocquet JM, Jouanne F, Tardy M (2002) Current strain regime in the Western Alps from continuous Global Positioning System measurements, 1996-2001. Geology 30:651–654

    Article  Google Scholar 

  • Camarda M, De Gregorio S, Favara R, Gurrieri S (2007) Evaluation of carbon isotope fractionation of soil CO2 under an advective-diffusive regimen: a tool for computing the isotopic composition of unfractionated deep source. Geochim Cosmochim Acta 71:3016–3027. https://doi.org/10.1016/j.gca.2007.04.002

    Article  Google Scholar 

  • Carlé W (1953) Zwei fast vergessene Mineralwässer im ehemaligen hohenzollerischen Gebiet und ihre Stellung im Rahmen der Mineralwässer der Oberen Neckarlandes. Hohenzollerisches Jahresheft 13:60–83

    Google Scholar 

  • Carlé W (1954) Der Säuerling von Kleinengstingen-die einzige Mineralquelle der Albhochfläche. Zeitschrift der Deutschen Geologischen Gesellschaft 105:252–267

    Google Scholar 

  • Carlé W (1955) Bau und Entwicklung der Südwestdeutsche Großscholle vol 16. Geologisches Jahrbuch, Beihefte. Geologische Landesanstalt der Bundesrepublik Deutschland-Amt für Bodenforschung, Hannove

  • Carlé W (1958) Kohlensäure, Erdwärme und Herdlage im Uracher Vulkangebiet und seiner weiteren Umgebung. Zeitschrift der Deutschen Geologischen Gesellschaft 110:71–101

    Google Scholar 

  • Carlé W (1975) Die Mineral- und Thermalwässer von Mitteleuropa-Geologie, Chemismmus, Genese. Bücher der Zeitschrift Naturwissenschaftliche Rundschau, First edn. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart

  • Ciotoli G, Etiope G, Guerra M, Lombardi S (1999) The detection of concealed faults in the Ofanto Basin using the correlation between soil-gas fracture surveys. Tectonophysics 301:321–332. https://doi.org/10.1016/s0040-1951(98)00220-0

    Article  Google Scholar 

  • Cloetingh S et al (2005) Lithospheric memory, state of stress and rheology: neotectonic controls on Europe’s intraplate continental topography. Quat Sci Rev 24:241–304. https://doi.org/10.1016/j.quascirev.2004.06.015

    Article  Google Scholar 

  • Dezes P, Schmid SM, Ziegler PA (2004) Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33. https://doi.org/10.1016/j.tecto.2004.06.011

    Article  Google Scholar 

  • Dietrich H-G (1982) Hydrogeological results from the Urach 3 research borehole. In: Haenel R (ed) The Urach Geothermal Project. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, pp 59–80

  • Dreibrodt S, Lubos C, Terhorst B, Damm B, Bork HR (2010) Historical soil erosion by water in Germany: scales and archives, chronology, research perspectives. Quat Int 222:80–95. https://doi.org/10.1016/j.quaint.2009.06.014

    Article  Google Scholar 

  • Elio J, Ortega MF, Nisi B, Mazadiego LF, Vaselli O, Caballero J, Grandia F (2015) CO2 and Rn degassing from the natural analog of Campo de Calatrava (Spain): implications for monitoring of CO2 storage sites. Int J Greenh Gas Control 32:1–14. https://doi.org/10.1016/j.ijggc.2014.10.014

    Article  Google Scholar 

  • Ernst W (1968) Verteilung und Herkunft von Bodengasen in einigen süddeutschen Störungszonen Erdöl und Kohle, Erdgas, Petrochemie 21: Teil 1: 605–610. Teil 602:692–697

    Google Scholar 

  • Etiope G, Lombardi S (1995) Evidence for radon transport by carrier gas through faulted clays in Italy. J Radioanal Nucl Chem Artic 193:291–300. https://doi.org/10.1007/bf02039886

    Article  Google Scholar 

  • Etiope G, Guerra M, Raschi A (2005) Carbon dioxide and radon geohazards over a gas-bearing fault in the Siena Graben (Central Italy) Terr Atmos. Ocean Sci 16:885–896

    Google Scholar 

  • EU (2009) Directive 2009/31/EC of the European Parliament and of the Council on the geological storage of carbon dioxide Official Journal of the European Union

  • Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J Struct Geol 19:1393–1404. https://doi.org/10.1016/s0191-8141(97)00057-6

    Article  Google Scholar 

  • Federico C, Corso PP, Fiordilino E, Cardellini C, Chiodini G, Parello F, Pisciotta A (2010) CO2 degassing at La Solfatara volcano (Phlegrean Fields): processes affecting delta C-13 and delta O-18 of soil CO2. Geochim Cosmochim Acta 74:3521–3538. https://doi.org/10.1016/j.gca.2010.03.010

    Article  Google Scholar 

  • Flechsig C, Bussert R, Rechner J, Schütze C, Kämpf H (2008) The Hartousov Mofette Field in the Cheb Basin, Western Eger Rift (Czech Republic): a comperative geoelectric, sedimentologic and soil gas study of a magmatic diffuse co2-degassing structure. Z Geol Wiss 36:177–193

    Google Scholar 

  • Foltas F (1981) Geologische Kartierung im Raum Starzach (Baden-Württemberg) unter besonderer Berücksichtigung der CO2-Lagerstätte Eyach-Bad Niedernau. Diploma Thesis, Eberhard Karls Universität Tübingen

  • Frank M (1951) Der Wasserschatz im Gesteinskörper Württembergs. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart

  • Frantz S (1990) Hydrochemische Untersuchungen an Formationswässern des Eyacher Kohlensäuregebiets. Diploma Thesis, Eberhard Karls Universität Tübingen

  • Gal F, Brach M, Braibant G, Beny C, Michel K (2012) What can be learned from natural analogue studies in view of CO2 leakage issues in Carbon Capture and Storage applications? Geochemical case study of Sainte-Marguerite area (French Massif Central). Int J Greenh Gas Control 10:470–485. https://doi.org/10.1016/j.ijggc.2012.07.015

    Article  Google Scholar 

  • Gautheron C, Moreira M, Allegre C (2005) He, Ne and Ar composition of the European lithospheric mantle. Chem Geol 217:97–112. https://doi.org/10.1016/j.chemgeo.2004.12.009

    Article  Google Scholar 

  • Geissler WH et al (2005) Seismic structure and location of a CO2 source in the upper mantle of the western Eger (Ohre) Rift, central Europe. Tectonics. https://doi.org/10.1029/2004tc001672

    Google Scholar 

  • Geyer OF, Gwinner MP (2011) Geologie von Baden-Württemberg. Schweizerbart, Stuttgart

    Google Scholar 

  • Gilfillan SM et al (2008) The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces. USA Geochim Cosmochim Acta 72:1174–1198. https://doi.org/10.1016/j.gca.2007.10.009

    Article  Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Reviews in mineralogy and geochemistry, vol 47. Mineralogical Soc America, Washington, pp 247–317. https://doi.org/10.2138/rmg.2002.47.8

    Google Scholar 

  • Greiner G (1976) In situ Spannungsmessungen und tektonischer Beanspruchungsplan in Südwestdeutschland. Geol Rundsch 65:55–65. https://doi.org/10.1007/bf01808455

    Article  Google Scholar 

  • Guerra M, Lombardi S (2001) Soil-gas method for tracing neotectonic faults in clay basins: the Pisticci field (Southern Italy). Tectonophysics 339:511–522. https://doi.org/10.1016/s0040-1951(01)00072-5

    Article  Google Scholar 

  • Hansell A, Oppenheimer C (2004) Health hazards from volcanic gases: a systematic literature review. Arch Environ Health 59:628–639

    Article  Google Scholar 

  • Heinzelmann K (1935) Tektonische Untersuchungen im Vorland der Mittleren Schwäbischen Alb. Dissertation, Technische Hochschule Stuttgart

  • Herrmann R (1938) Tektonische Untersuchungen im Württembergisch-Hohenzollerischen Albvorland. Dissertation, Technische Hochschule Stuttgart

  • Hilse U, Pudlo D, Gaupp R (2010) Geochemical variations in German Buntsandstein and Rotliegend sandstones: the main CO2 reservoir rocks in Germany. Geochim Cosmochim Acta 74:A405–A405

    Google Scholar 

  • Hoefs J (2015) Stable isotope geochemistry, vol 7. Springer, Berlin

    Book  Google Scholar 

  • Hummel K (1930) Beziehungen der Mineralquellen Deutschlands zum jungen Vulkanismus. Zeitschrift für praktische Geologie 38:Teil 1: 1–8; Teil 2: 20–24

  • Joseph EP, Beckles DM, Cox L, Jackson VB, Alexander D (2015) An evaluation of ambient sulphur dioxide concentrations from passive degassing of the Sulphur Springs, Saint Lucia geothermal system: Implications for human health. J Volcanol Geotherm Res 304:38–48. https://doi.org/10.1016/j.jvolgeores.2015.07.036

    Article  Google Scholar 

  • Jung NH, Han WS, Watson ZT, Graham JP, Kim KY (2014) Fault-controlled CO2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah. Earth Planet Sci Lett 403:358–367. https://doi.org/10.1016/j.epsl.2014.07.012

    Article  Google Scholar 

  • Kämpf H, Bräuer K, Schumann J, Hahne K, Strauch G (2013) CO2 discharge in an active, non-volcanic continental rift area (Czech Republic): Characterisation (delta C-13, He-3/He-4) and quantification of diffuse and vent CO2 emissions. Chem Geol 339:71–83. https://doi.org/10.1016/j.chemgeo.2012.08.005

    Article  Google Scholar 

  • Knopf S, May F (2017) Comparing methods for the estimation of CO2 storage capacity in saline aquifers in Germany: regional aquifer based vs. structural trap based assessments. In: Dixon T, Laloui L, Twinning S (eds) 13th International conference on greenhouse gas control technologies, Ghgt-13, vol 114. Energy Procedia, pp 4710–4721. https://doi.org/10.1016/j.egypro.2017.03.1605

  • Kumar A, Arora V, Walia V, Bajwa BS, Singh S, Yang TF (2014) Study of soil gas radon variations in the tectonically active Dharamshala and Chamba regions, Himachal Pradesh. India Environ Earth Sci 72:2837–2847. https://doi.org/10.1007/s12665-014-3188-7

    Article  Google Scholar 

  • Laubscher H (2001) Plate interactions at the southern end of the Rhine graben. Tectonophysics 343:1–19. https://doi.org/10.1016/s0040-1951(01)00193-7

    Article  Google Scholar 

  • Lewicki JL, Hilley GE (2014) Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA. J Volcanol Geotherm Res 284:1–15. https://doi.org/10.1016/j.jvolgeores.2014.07.011

    Article  Google Scholar 

  • LGRB (2006) Geologisches 3D-Landesmodell Baden-Württemberg 1: 500 000, Kartenansicht. Landesamt für Geologie, Rohstoffe und Bergbau

    Google Scholar 

  • Mäussnest O (1982) The volcanic phenomena in the Urach region. In: Haenel R (ed) The Urach Geothermal Project. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, pp 157–160

    Google Scholar 

  • Miocic JM, Gilfillan SMV, McDermott C, Haszeldine RS (2013) Mechanisms for CO2 leakage prevention: a global dataset of natural analogues. In: Haenel M, Juhlin C, Held H, Bruckman V, Tambach T, Kempka T (eds) European Geosciences Union General Assembly 2013, Egudivision Energy, Resources & the Environment, Ere. Energy Procedia, vol 40. Elsevier Science Bv, Amsterdam, pp 320–328. https://doi.org/10.1016/j.egypro.2013.08.037

    Google Scholar 

  • Miocic JM, Gilfillan SMV, Roberts JJ, Edlmann K, McDermott CI, Haszeldine RS (2016) Controls on CO2 storage security in natural reservoirs and implications for CO2 storage site selection Int J Greenh Gas. Control 51:118–125. https://doi.org/10.1016/j.ijggc.2016.05.019

    Google Scholar 

  • Pfanz H (2008) Mofetten - Kalter Atem schlafender Vulkane. RVDL-Verlag, Köln

    Google Scholar 

  • Quenstedt FA (1864) Geologische Ausflüge in Schwaben. Verlag der H. Laupp´schen Buchhandlung, Tübingen

  • Rast H (1983) Vulkane und Vulkanismus. Enke Verlag, Stuttgart

    Google Scholar 

  • Rittmann A (1936) Vulkane und ihre Tätigkeit, 1st edn. Enke Verlag, Stuttgart

    Google Scholar 

  • Roberts JJ, Wood RA, Haszeldine RS (2011) Assessing the health risks of natural CO2 seeps in Italy. Proc Natl Acad Sci USA 108:16545–16548. https://doi.org/10.1073/pnas.1018590108

    Article  Google Scholar 

  • Rupf I, Nitsch E (2008) Das Geologische Landesmodell von Baden-Württemberg: Datengrundlage, technische Umsetzung und erste geologische Ergebnisse LGRB-Informationen 21, Freiburg i. Br

  • Sandig C, Sauer U, Brauer K, Serfling U, Schutze C (2014) Comparative study of geophysical and soil–gas investigations at the Hartousov (Czech Republic) natural CO2 degassing site. Environ Earth Sci 72:1421–1434. https://doi.org/10.1007/s12665-014-3242-5

    Article  Google Scholar 

  • Schädel K (1982) The geology of the heat anomaly of Urach. In: Haenel R (ed) The Urach Geothermal Project. E. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, pp 147–156

    Google Scholar 

  • Schloemer S et al (2013) A review of continuous soil gas monitoring related to CCS: technical advances and lessons learned. Appl Geochem 30:148–160. https://doi.org/10.1016/j.apgeochem.2012.08.002

    Article  Google Scholar 

  • Schmidt A (1964) Geologische Karte von Baden-Württemberg 1:25000 Blatt 7519 Rottenburg

  • Schmidt A (1975a) Erläuterungen zur geologischen Karte von Baden-Württemberg 1:25000 Blatt 7518 Horb. Landesvermessungsamt Baden-Württemberg, Stuttgart

    Google Scholar 

  • Schmidt A (1975b) Geologische Karte von Baden-Württemberg 1:25000 Blatt 7518 Horb

  • Schmincke H-U (2013) Vulkanismus. Primus Verlag, Darmstadt

    Google Scholar 

  • Schönenberg R (1973) Zur Tektonik des südwestdeutschen Schichtstufenlandes unter dem Aspekt der Plattentektonik. Oberrheinische Geologische Abhandlungen 22:75–86

    Google Scholar 

  • Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics. https://doi.org/10.1029/2001tc900022

    Google Scholar 

  • Schütze C et al (2012) Natural analogues: a potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes Environ. Earth Sci 67:411–423. https://doi.org/10.1007/s12665-012-1701-4

    Article  Google Scholar 

  • Schwarz HU (2012) The Swabian-Franconian fault pattern. Z Dtsch Ges Geowiss 163:411–446. https://doi.org/10.1127/1860-1804/2012/0163-0411

    Google Scholar 

  • Shinohara H (2008) Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev Geophys. https://doi.org/10.1029/2007rg000244

    Google Scholar 

  • Simon T (1987) Zur Entstehung der Schichtstufenlandschaft im nördlichen Baden-Württemberg Jahreshefte des geologischen. Landesamtes Baden-Württemberg 29:145–167

    Google Scholar 

  • Smets B, Tedesco D, Kervyn F, Kies A, Vaselli O, Yalire MM (2010) Dry gas vents (“mazuku”) in Goma region (North-Kivu, Democratic Republic of Congo): Formation and risk assessment. J Afr Earth Sci 58:787–798. https://doi.org/10.1016/j.jafrearsci.2010.04.008

    Article  Google Scholar 

  • Ströbel W (1952) Zur Landschaftsgeschichte der Filder, südlich von Stuttgart Jahreshefte der Geologischen Abteilung des Württembergischen. Statistischen Landesamtes 2:118–143

    Google Scholar 

  • Sugisaki R et al (1983) Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. J Geol 91:239–258

    Article  Google Scholar 

  • Uehara S, Shimamoto T (2007) Permeability of fault rocks from the Median Tectonic Line in Ohshika-mura, Nagano, Japan as studied by pressure-cycling tests. In: Lewis H, Couples GD (eds) Relationship between damage and localization, vol 289. Geological Society Special Publication, London, pp 143–160. https://doi.org/10.1144/sp289.9

    Google Scholar 

  • Ufrecht W (2006) Zusammensetzung und Herkunft der Gase von Stuttgart-Bad Cannstatt und -Berg Hydrogeologie des Stuttgarter Mineralwassersystems-Schriftenreihe des Amtes für Umweltschutz-Landeshauptstadt. Stuttgart 3:103–114

    Google Scholar 

  • Vialle S, Druhan JL, Maher K (2016) Multi-phase flow simulation of CO2 leakage through a fractured caprock in response to mitigation strategies. Int J Greenh Gas Control 44:11–25. https://doi.org/10.1016/j.ijggc.2015.10.007

    Article  Google Scholar 

  • Villinger E (1982) Hydrogeological aspects of the geothermal area of Urach. In: Haenel R (ed) The Urach Geothermal Project. E. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, pp 165–178

    Google Scholar 

  • Villinger E (1994) Geologie und Hydrogeologie des Raumes Rottenburg am Neckar (Baden-Württemberg). Wasserwirtschaft 84:402–408

    Google Scholar 

  • Villinger E (1998) Zur Flußgeschichte von Rhein und Donau in Südwestdeutschland. Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins 80:361–398

    Article  Google Scholar 

  • Walia V, Lin SJ, Fu CC, Yang TF, Hong WL, Wen KL, Chen CH (2010) Soil-gas monitoring: A tool for fault delineation studies along Hsinhua Fault (Tainan), Southern Taiwan. Appl Geochem 25:602–607. https://doi.org/10.1016/j.apgeochem.2010.01.017

    Article  Google Scholar 

  • Ziegler PA, Dezes P (2005) Evolution of the lithosphere in the area of the Rhine Rift System. Int J Earth Sci 94:594–614. https://doi.org/10.1007/s00531-005-0474-3

    Article  Google Scholar 

  • Ziegler PA, Dezes P (2006) Crustal evolution of Western and Central Europe. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society Memoirs, vol 32. Geological Soc Publishing House, Bath, pp 43–56. https://doi.org/10.1144/gsl.mem.2006.032.01.03

    Google Scholar 

  • Ziegler PA, Dezes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms. Glob Planet Change 58:237–269. https://doi.org/10.1016/j.gloplacha.2006.12.004

    Article  Google Scholar 

  • Ziegler PA, Cloetingh S, vanWees JD (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252:7–59. https://doi.org/10.1016/0040-1951(95)00102-6

    Article  Google Scholar 

Download references

Acknowledgements

The presented work has been funded by the German Federal Ministry of Education and Research (BMBF) in the frame of the GEOTECHNOLOGIEN program. The financial support of the MONACO project (under the Grant ID 03G0785K) is gratefully acknowledged. We thank the municipality Starzach, in particular Marion and Armin Vees, and Max-Richard Freiherr von Rassler for support and unlimited access to the field site. We also thank Prof. Werner Ernst for supporting information, and helpful comments and discussions and Dr. Karin Bräuer from the Helmholtz Centre for Environmental Research-UFZ for the isotope analysis and the fruitful discussions. The critical and helpful comments of three anonymous reviewers are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Leven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lübben, A., Leven, C. The Starzach site in Southern Germany: a site with naturally occurring CO2 emissions recovering from century-long gas mining as a natural analog for a leaking CCS reservoir. Environ Earth Sci 77, 316 (2018). https://doi.org/10.1007/s12665-018-7499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7499-y

Keywords

Navigation