Skip to main content
Log in

Diffuse Helium and Hydrogen Degassing to Reveal Hidden Geothermal Resources in Oceanic Volcanic Islands: The Canarian Archipelago Case Study

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

We report herein the results of soil gas geochemistry studies, focused mainly on nonreactive and/or highly mobile gases such as He and H2, in five mining licenses at Tenerife and Gran Canaria, Canary Islands, Spain, during 2011–2014. The primary objective was to sort the possible geothermal potential of these five mining licenses, thus reducing the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. By combining the overall information obtained by the statistical–graphical analysis of the soil He and H2 data, the spatial distribution of soil gas concentrations and the analysis of selected chemical ratios of the soil gas to evaluate the influence of deep-seating degassing, two of the five mining licenses (Garehagua and Abeque, both located in Tenerife Island) seemed to show the highest geothermal potential. These results will be useful for future implementation and development of geothermal energy in the Canaries, the only Spanish territory with potential high-enthalpy geothermal resources, thus the most promising area for high-enthalpy geothermal installations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agusto M, Tassi F, Caselli AT, Vaselli O, Rouwet D, Capaccioni B, Caliro S, Chiodini G, Darrah T (2013) Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue–Caviahue volcanic complex (Argentina). J Volcanol Geotherm Res 257:44–56. doi:10.1016/j.jvolgeores.2013.03.003

    Article  Google Scholar 

  • Albert-Beltrán JF, Araña V, Diez JL, Valentín A (1990) Physical–chemical conditions of the Teide volcanic system (Tenerife, Canary Islands). J Volcanol Geotherm Res 43:321–332. doi:10.1016/0377-0273(90)90059-O

    Article  Google Scholar 

  • Ancochea E, Fuster JM, Ibarrola E, Cendrero A, Coello J, Hernán F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K–Ar data. J Volcanol Geotherm Res 44:231–249. doi:10.1016/0377-0273(90)90019-C

    Article  Google Scholar 

  • Anguita F, García-Cacho L, Colombo F, González-Camacho A, Vieira R (1991) Roque Nublo caldera: a new stratocone caldera in Gran Canaria, Canary Islands. J Volcanol Geotherm Res 47:45–63. doi:10.1016/0377-0273(91)90100-E

    Article  Google Scholar 

  • Ármannsson H, Fridriksson T (2009) Application of geochemical methods in geothermal exploration. In: Presented at “Short course on surface exploration for geothermal resources”. UNU-GTP and LaGeo. Ahuachapan and Santa Tecla, El Salvador

  • Barberi F, Carapezza ML, Cioni R, Lelli M, Menichini M, Ranaldi M, Ricci T, Tarchini L (2013) New geochemical investigations in Platanares and Azacualpa geothermal sites (Honduras). J Volcanol Geotherm Res 257:113–134. doi:10.1016/j.jvolgeores.2013.03.011

    Article  Google Scholar 

  • Bertrami R, Buonasorte G, Ceccarelli A, Lombardi S, Pieri S, Scandiffio G (1990) Soil gases in geothermal prospecting: two case histories (Sabatini Volcanoes and Alban Hills, Latium, Central Italy). J Geophys Res 95:21475. doi:10.1029/JB095iB13p21475

    Article  Google Scholar 

  • Cardellini C, Chiodini G, Frondini F, Granieri D, Lewicki J, Peruzzi L (2003) Accumulation chamber measurements of methane fluxes: application to volcanic-geothermal areas and landfills. Appl Geochem 18:45–54. doi:10.1016/S0883-2927(02)00091-4

    Article  Google Scholar 

  • Carracedo JC (1994) The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes. J. Volcanol Geotherm Res 60:225–241. doi:10.1016/0377-0273(94)90053-1

    Article  Google Scholar 

  • Chiodini G, Marini L (1998) Hydrothermal gas equilibria: the H2O–H2–CO2–CO–CH4 system. Geochim Cosmochim Acta 62:2673–2687. doi:10.1016/S0016-7037(98)00181-1

    Article  Google Scholar 

  • Chiodini G, Baldini A, Barberi F, Carapezza ML, Cardellini C, Frondini F, Granieri D, Ranaldi M (2007) Carbon dioxide degassing at Latera caldera (Italy): evidence of geothermal reservoir and evaluation of its potential energy. J Geophys Res 112:B12204. doi:10.1029/2006JB004896

    Article  Google Scholar 

  • Clarke WB, Jenkins WJ, Top Z (1976) Determination of tritium by mass spectrometric measurement of 3 He. Int J Appl Radiat Isot 27:515–522. doi:10.1016/0020-708X(76)90082-X

    Article  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640. http://mmbr.asm.org/content/60/4/609.abstract

  • Deutsch CV, Journel AG (1998) Geostatistical software library and user’s guide, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Di Filippo M, Lombardi S, Nappi G, Reimer GM, Renzulli A, Toro B (1999) Volcano–tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy. Geothermics 28:377–393. doi:10.1016/S0375-6505(99)00014-0

    Article  Google Scholar 

  • European Commission (1999) Blue book on geothermal resources: a strategic plan for the development of European geothermal sector. Office for Official Publications of the European Communities, Luxembourg. ISBN:9282858030, 9789282858035

  • Finlayson JB (1992) A soil gas survey over rotorua geothermal field, Rotorua, New Zealand. Geothermics 21:181–195. doi:10.1016/0375-6505(92)90076-L

    Article  Google Scholar 

  • Fu CC, Yang TF, Walia V, Chen CH (2005) Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan. Geochem J 39:427–439. doi:10.2343/geochemj

    Article  Google Scholar 

  • García-Cacho L, Díez-Gil JL, Araña V (1994) A large volcanic debris avalanche in the Pliocene Roque Nublo Stratovolcano, Gran Canaria, Canary Islands. J Volcanol Geotherm Res 63:217–229. doi:10.1016/0377-0273(94)90075-2

    Article  Google Scholar 

  • García-Yeguas A, Koulakov I, Ibáñez JM, Rietbrock A (2012) High resolution 3D P wave velocity structure beneath Tenerife Island (Canary Islands, Spain) based on tomographic inversion of active-source data. J Geophys Res 117:B09309. doi:10.1029/2011JB008970

    Google Scholar 

  • Gasparini A, Fontes JC, Custiodio E, Jiménez J, Nuñez JA (1987) Primeros datos sobre las características químicas e isotópicas del agua subterránea del Macizo monolítico de Amurga, Gran Canaria. Simposio Canarias 2000. IV Simposio de hidrogeología (in Spanish)

  • Gasparini A, Custodio E, Fontes JC, Jiménez J, Nuñez JA (1990) Exemple d’etude geochimiche et isotopique de circulations aquifers en terrain volcanique sous climat semi-aride (Amurga, Gran Canaria, Iles Canaries). J Hydrol 114:61–91. doi:10.1016/0022-1694(90)90075-9

    Article  Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161. doi:10.1016/0883-2927(87)90030-8

    Article  Google Scholar 

  • Giggenbach WF (1991) Chemical techniques in geothermal exploration. In: D'Amore F (coordinator) Application of geochemistry in geothermal reservoir development. UNITAR/UNDP publication, Rome, pp 119–142

  • Gluekauf E (1946) A microanalysis of helium and neon contents of air. Proc R Soc Lond Ser A 185:98–119. doi:10.1098/rspa.1946.0007

    Article  Google Scholar 

  • Gödde M, Meuser K, Conrad R (2000) Hydrogen consumption and carbon monoxide production in soils with different properties. Biol Fertil Soils 32:129–134

    Article  Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. Rev Mineral Geochem 47:247–317. doi:10.2138/rmg.2002.47.8

    Article  Google Scholar 

  • Guillou H, Pérez-Torrado FJ, Hansen A, Carracedo JC, Gimeno D (2004) The Plio-Quaternary volcanic evolution of Gran Canaria based on new K–Ar ages and magnetostratigraphy. J Volcanol Geotherm Res 135:221–246. doi:10.1016/j.jvolgeores.2004.03.003

    Article  Google Scholar 

  • Hernández PA, Pérez NM, Salazar J, Reimer M, Wakita H (2004) Radon and helium in soil gases at Cañadas caldera, Tenerife, Canary Islands, Spain. J Volcanol Geotherm Res 131:59–76. doi:10.1016/S0377-0273(03)00316-0

    Article  Google Scholar 

  • Hernández PA, Pérez NM, Fridriksson T, Egbert J, Ilyinskaya E, Thárhallsson A, Ívarsson G, Gíslason G, Gunnarsson I, Jónsson B, Padrón E, Melián G, Mori T, Notsu K (2012) Diffuse volcanic degassing and thermal energy release from Hengill volcanic system, Iceland. Bull Volcanol 74:2435–2448. doi:10.1007/s00445-012-0673-2

    Article  Google Scholar 

  • Instituto Geológico y Minero de España (IGME) (1977) Evaluación del potencial geotérmico de la isla de Lanzarote y selección de anomalías en las Islas Canarias. Informe final I (in Spanish)

  • Instituto Geológico y Minero de España (IGME) (1979) Convenio con empresa nacional Adaro para prospección geotérmica en las Islas Canarias. Informe final (in Spanish)

  • Instituto Geológico y Minero de España (IGME) (1993a) Prospección geotérmica de la Caldera de Las Cañadas del Teide (Tenerife). Estudio Geovolcanológico. Informe Final (in Spanish)

  • Instituto Geológico y Minero de España (IGME) (1993b) Prospección geotérmica de la Caldera de Las Cañadas del Teide (Tenerife). Estudio Geoquímico e Isotópico de las fumarolas del Teide. Informe Final (in Spanish)

  • Instituto Geológico y Minero de España (IGME) (1993c) Prospección geotérmica de la Caldera de Las Cañadas del Teide (Tenerife) mediante el empleo de scanners aerotransportados sensibles al infrarrojo térmico (in Spanish)

  • Instituto Geológico y Minero de España (IGME) (1993d) Prospección geotérmica de la Caldera de Las Cañadas del Teide (Tenerife). Termologia Aérea Teide (Nota complementaria) (in Spanish)

  • Instituto Geológico y Minero de España (IGME) (1993e) Prospección geotérmica de la Caldera de Las Cañadas del Teide (Tenerife). Estudio Hidrogeoquímico. Informe Final (in Spanish)

  • Instituto Geológico y Minero de España (IGME) (1993f) Prospección geotérmica de la Caldera de Las Cañadas del Teide (Tenerife). Estudio geoquimico general de las aguas subterráneas en la isla de Tenerife. 59 pp. + Anexos (in Spanish)

  • Instituto Geológico y Minero de España (IGME) (1993g) Investigación geotérmica en las islas Canarias y evaluación de recursos y reservas geotérmicas en España (in Spanish)

  • Instituto Geológico y Minero de España (IGME) (1993h) Investigación geotérmica en el área central de la isla de Tenerife. Informe Final (in Spanish)

  • Instituto Geológico y Minero de España (IGME) (2011) Mapa Geológico de Canarias. GRAFCAN Ediciones, Santa Cruz de Tenerife

    Google Scholar 

  • Kröchert J, Buchner E (2008) Age distribution of cinder cones within the Bandas del Sur Formation, southern Tenerife, Canary Islands. Geol Mag 146:161. doi:10.1017/S001675680800544X

    Article  Google Scholar 

  • Lewicki J, Oldenburg C (2004) Strategies for detecting hidden geothermal systems by near-surface gas monitoring. Lawrence Berkeley National Laboratory. Retrieved from https://escholarship.org/uc/item/32t1m8wm

  • Lombardi S, Voltattorni N (2010) Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. Appl Geochem 25:1206–1220. doi:10.1016/j.apgeochem.2010.05.006

    Article  Google Scholar 

  • Marini L, Gambardella B (2005) Geochemical modeling of magmatic gas scrubbing. Ann Geophys 48:739–753. http://hdl.handle.net/2122/935

  • Marrero R (2010) Modelo Hidrogeoquímico del acuífero de las Cañadas del Teide, Tenerife, Islas Canarias. University of Barcelona, Barcelona (in Spanish)

    Google Scholar 

  • Martí J, Gudmundsson A (2000) The Las Cañadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. J Volcanol Geotherm Res 103:161–173. doi:10.1016/S0377-0273(00)00221-3

    Article  Google Scholar 

  • McCarthy KP (1982) Helium and ground temperature surveys at steamboat springs, Colorado. Colorado Geological Survey, United States

  • McCarthy KP (1983) Helium exploration survey for the Animas Valley, Colorado. Geotherm Resour Counc Bull 12:9–14. ISSN:0160-7782

  • Mörner NA, Etiope G (2002) Carbon degassing from the lithosphere. Glob Planet Change 33:185–203. doi:10.1016/S0921-8181(02)00070-X

    Article  Google Scholar 

  • Nicholson K (1993) Geothermal fluids: chemistry and exploration techniques. Springer. ISBN:978-3-642-77844-5

  • Novelli PC, Lang PM, Masarie KA, Hurst DF, Myers R, Elkins JW (1999) Molecular hydrogen in the troposphere: global distribution and budget. J Geophys Res 104:30427–30444. doi:10.1029/1999JD900788

    Article  Google Scholar 

  • Olsen KB, Dresel PE, Evans JC, McMahon WL, Poreda R (2006) Measurement of helium isotopes in soil gas as an indicator of tritium groundwater contamination. Environ Sci Technol 40:2895–2902. doi:10.1021/es0518575

    Article  Google Scholar 

  • Ozima M, Podosek FA (2002) Noble gas geochemistry, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Padrón E, Pérez NM, Hernández PA, Sumino H, Melián GV, Barrancos J, Nolasco D, Padilla G (2012) Helium emission at Cumbre Vieja volcano, La Palma, Canary Islands. Chem Geol 312–313:138–147. doi:10.1016/j.chemgeo.2012.04.018

    Article  Google Scholar 

  • Padrón E, Padilla G, Hernández PA, Pérez NM, Calvo D, Nolasco D, Barrancos J, Melián GV, Dionis S, Rodríguez F (2013a) Soil gas geochemistry in relation to eruptive fissures on Timanfaya volcano, Lanzarote Island (Canary Islands, Spain). J Volcanol Geotherm Res 250:91–99. doi:10.1016/j.jvolgeores.2012.10.013

    Article  Google Scholar 

  • Padrón E, Pérez NM, Hernández PA, Sumino H, Melián GV, Barrancos J, Nolasco D, Padilla G, Dionis S, Rodríguez F, Hernández I, Calvo D, Peraza MD, Nagao K (2013b) Diffusive helium emissions as a precursory sign of volcanic unrest. Geology 41:539–542. doi:10.1130/G34027.1

    Article  Google Scholar 

  • Pedroni A, Hammerschmidt K, Friedrichsen H (1999) He, Ne, Ar and C isotope systematics of geothermal emanations in the Lesser Antilles Islands Arc. Geochim Cosmochim Acta 63(3–4):515–532. doi:10.1016/S0016-7037(99)00018-6

    Article  Google Scholar 

  • Pérez NM, Nakai S, Wakita H, Hernández PA, Salazar JM (1996) Helium-3 emission in and around Teide volcano, Tenerife, Canary Islands, Spain. Geophys Res Lett 23:3531–3534. doi:10.1029/96GL03470

    Article  Google Scholar 

  • Pérez NM, Hernández PA, Padrón E, Melián G, Marrero R, Padilla G, Barrancos J, Nolasco D (2007) Precursory subsurface 222Rn and 220Rn degassing signatures of the 2004 seismic crisis at Tenerife, Canary Islands. Pure appl Geophys 164:2431–2448. doi:10.1007/s00024-007-0280-x

    Article  Google Scholar 

  • Piña-Varas P, Ledo J, Queralt P, Marcuello A, Bellmunt F, Hidalgo R, Messeiller M (2014) 3-D magnetotelluric exploration of tenerife geothermal system (Canary Islands, Spain). Surv Geophys 35:1045–1064. doi:10.1007/s10712-014-9280-4

    Article  Google Scholar 

  • Reimer GM (1980) Use of soil-gas helium concentrations for earthquake prediction: limitations imposed by diurnal variation. J Geophys Res 85:3107–3114. doi:10.1029/JB085iB06p03107

    Article  Google Scholar 

  • Reimer GM (1985) Prediction of central California earthquakes from soil-gas helium fluctuations. Pure appl Geophys 122:369–375. doi:10.1007/BF00874605

    Article  Google Scholar 

  • Reimer GM (1986) Helium soil-gas survey of the aurora uranium deposit, McDermitt Caldera Complex, Oregon. J Geophys Res 91:12355–12358. doi:10.1029/JB091iB12p12355

    Article  Google Scholar 

  • Reimer GM, Bowles CG (1979) Soil-gas helium concentrations in the vicinity of a uranium deposit, Red Desert, Wyoming. United States Geological Survey, Reston

    Google Scholar 

  • Rodríguez F, Pérez NM, Padrón E, Melián GV, Piña-Varas P, Dionis S, Barrancos J, Padilla G, Hernández PA, Marrero R, Ledo J, Bellmunt F, Queralt P, Marcuello A, Hidalgo R (2015) Surface geochemical and geophysical studies for geothermal exploration at the Southern Volcanic Rift Zone of Tenerife, Canary Islands, Spain. Geothermics. doi: 10.1016/j.geothermics.2015.02.007

  • Romero C (1991) Las manifestaciones volcánicas históricas del archipiélago Canario. University of La Laguna (in Spanish)

  • Schmincke H, Sumita M (1998) Volcanic evolution of Gran Canaria reconstructed from apron sediments: synthesis of Vicap project drilling. In: Weaver PPE, Schmincke H, Firth JV, Duffield W (eds) Proceedings of the ocean drilling program, Scientific Results

  • Schmincke H, Sumita M (2010) Geological evolution of the Canary Islands: a young volcanic archipelago adjacent to the old African continent. Görres, Koblenz. ISBN 978-3-86972-005-0

    Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149. doi:10.1016/0375-6742(74)90030-2

    Article  Google Scholar 

  • Smith-Downey NV, Randerson JT, Eiler JM (2006) Temperature and moisture dependence of soil H2 uptake measured in the laboratory. Geophys Res Lett 33:L14813. doi:10.1029/2006GL026749

    Article  Google Scholar 

  • Tennant CB, White ML (1959) Study of the distribution of some geochemical data. Econ Geol 54:1281–1290. doi:10.2113/gsecongeo.54.7.1281

    Article  Google Scholar 

  • Trevors J (1985) Hydrogen consumption in soil. Plant Soil 2:417–422

    Article  Google Scholar 

  • Valentín A, Albert-Beltrán JF, Diez JL (1990) Geochemical and geothermal constraints on magma bodies associated with historic activity, Tenerife (Canary Islands). J Volcanol Geotherm Res 44:251–264. doi:10.1016/0377-0273(90)90020-G

    Article  Google Scholar 

  • Voltattorni N, Sciarra A, Quattrocchi F (2010) The application of soil-gas technique to geothermal exploration: study of hidden potential geothermal systems. In: Proceedings of world geothermal congress, Bali, Indonesia

  • Werner C, Cardellini C (2006) Comparison of carbon dioxide emissions with fluid upflow, chemistry, and geologic structures at the Rotorua geothermal system, New Zealand. Geothermics 35:221–238. doi:10.1016/j.geothermics.2006.02.006

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the Projects GEOTHERCAN (IPT-2011-1186-920000) and GEOHELIO (PTQ-12-05661) of the Spanish National R + D + I Plan 2008–2011, the Instituto Tecnológico y de Energías Renovables (ITER), the Instituto Volcanológico de Canarias (INVOLCAN), Petratherm España, the Cabildo de Tenerife and the D.G. Industry and Energy of the Canary Islands Government. We are especially grateful to D. Nolasco, M. Díaz, R. Antón, D. Aragón, C. Báncora, M. Cordero, P. González, A. González-Santana, D. Mani, A. Nannoni, D. Nieto, R. Pérez, M. Refoyo, P. Rodríguez, A. Toscano and R. Vega for their assistance in the field works and laboratory analysis. We also want to thank Cañadas del Teide National Park and the Municipality of Guía de Isora for the logistic support during the survey periods, as well as to Michael Rycroft and two anonymous reviewers whose useful comments and constructive suggestions greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, F., Pérez, N.M., Padrón, E. et al. Diffuse Helium and Hydrogen Degassing to Reveal Hidden Geothermal Resources in Oceanic Volcanic Islands: The Canarian Archipelago Case Study. Surv Geophys 36, 351–369 (2015). https://doi.org/10.1007/s10712-015-9320-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-015-9320-8

Keywords

Navigation