Skip to main content
Log in

Total petroleum hydrocarbon degradation in contaminated soil as affected by plants growth and biochar

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the effect of barley and oat plants and poultry manure biochar on total petroleum hydrocarbons (TPHs) degradation and microbial respiration at 4, 6 and 8% TPH levels in soil. Results showed that with increasing TPH levels, plants growth and TPHs degradation significantly reduced; however, the presence of plants in contaminated soil and application of biochar significantly increased degradation of TPHs and microbial respiration rate. TPHs reduction percentage in soils cultivated with barley and oat were about 1.02 and 0.75 times higher than unplanted soil. Microbial respiration rate in soil cultivated with barley and oat increased about 67 and 34.5% compared to unplanted treatment. TPHs reduction percentage and average of microbial respiration rate in biochar-treated soil significantly increased by 21.76 and 37.73% for barley and 20.36 and 45.18% for oat plant compared to non-biochar treatments, respectively. Barley and oat appear to be suitable for degradation of TPHs, and biochar is useful amendment for enhancing TPHs degradation in this soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563:693–703

    Article  Google Scholar 

  • Alef K (1995) Soil respiration. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, San Diego, pp 214–220

    Google Scholar 

  • Amadi A, Dickson AA, Maate GO (1993) Remediation of oil polluted soils: 1. Effect of organic and inorganic nutrient supplements on the performance of maize (Zea may L.). Water Air Soil Pollut 66:59–76

    Article  Google Scholar 

  • Anderson JPE (1982) Soil respiration. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2, 2nd edn. Agronomy monograph 9. ASA and SSSA, Madison, pp 837–871

    Google Scholar 

  • Asadollahi A, Zamani J, Hajabbasi MA, Schulin R (2016) Using maize (Zea mays L.) and sewage sludge to remediate a petroleum-contaminated calcareous soil. Soil Sediment Contam Int J 25(1):26–37

    Article  Google Scholar 

  • Asiabadi FI, Mirbagheri SA, Najafi P, Moatar F (2014) Phytoremediation of petroleum-contaminated soils around Isfahan Oil Refinery (Iran) by sorghum and barley. Curr World Environ 9(1):65

    Article  Google Scholar 

  • Banks MK, Kulakow P, Schwab AP, Chen Z, Rathbone K (2003) Degradation of crude oil in the rhizosphere of Sorghum bicolor. Int J Phytorem 5:225–234

    Article  Google Scholar 

  • Barrutia O, Garbisu C, Epelde L, Sampedro MC, Goicolea MA, Becerril JM (2011) Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Sci Total Environ 409:4087–4093

    Google Scholar 

  • Baruah P, Baruah PP, Deka S (2013) Removal of hydrocarbon from crude oil contaminated soil by Cyperus brevifolius Rottb. Bull Environ Pharmacol Life Sci 2:123–130

    Google Scholar 

  • Basumatary B, Bordoloi S, Sarma HP (2012) Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air Soil Pollut 223:3373–3383

    Article  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282

    Article  Google Scholar 

  • Brandt R, Merkl N, Schultze-Kraft R, Infante C, Broll G (2006) Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Int J Phytoremediation 8:273–284

    Article  Google Scholar 

  • Bremner JM (1996) Nitrogen total. In: Sparks DL et al (eds) Methods of soil analysis. Part III, 3rd edn. Madison, ASA and SSSA, pp 1085–1122

    Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pest Manag Sci 13(5):495–504

    Article  Google Scholar 

  • Chapman HD, Pratt DF (1961) Methods of analysis for soil, plant, and water. Division of Agricultural Science, University of California, Berkeley, p 60

    Google Scholar 

  • Cheema SA, Khan MI, Tang X, Zhang C, Shen C, Malik Z, Ali S, Yang J, Shen K, Chen X, Chen Y (2009) Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater 166:1226–1231

    Article  Google Scholar 

  • Cheema SA, Khan MI, Shen C, Tang X, Farooq M, Chen L, Zhang C, Chen Y (2010) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater 177:384–389

    Article  Google Scholar 

  • Chiapusio G, Pujol S, Toussaint ML, Badot PM, Binet P (2007) Phenanthrene toxicity and dissipation in rhizosphere of grassland plants (Lolium perenne L. and Trifolium pratense L.) in three spiked soils. Plant Soil 294:103–112

    Article  Google Scholar 

  • Child R, Miller CD, Liang Y, Sims RC, Anderson AJ (2007) Pyrene mineralization by sp. strain KMS in a barley rhizosphere. J Environ Qual 36(5):1260–1265

    Article  Google Scholar 

  • Chirakkara RA, Reddy KR (2015) Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecol Eng 85:265–274

    Article  Google Scholar 

  • Chupakhina GN, Maslennikov PV (2004) Plant adaptation to oil stress. Russ J Ecol 35:290–295

    Article  Google Scholar 

  • Das KC, Garcia-Perez M, Bibens B, Melear N (2008) slow pyrolysis of poultry litter and pine woody biomass: impact of chars and bio-oils on microbial growth. J Environ Sci Health A 43:714–724

    Article  Google Scholar 

  • Escalante-Espinosa E, Gallegos-Martínez ME, Favela-Torres E, Gutiérrez-Rojas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59:405–413

    Article  Google Scholar 

  • Gaskin S, Soole K, Bentham R (2008) Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil. Int J Phytorem 10:378–389

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle size analysis – hydrometer method. In: Sparks DL et al (eds) Methods of soil analysis. Part III, 3rd edn. ASA and SSSA, Madison, pp 383–411

    Google Scholar 

  • Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim Cosmochim Acta 82:39–51

    Article  Google Scholar 

  • Gouda AH, El-Gendy AS, El-Razek TM, El-Kassas HI (2016) Evaluation of phytoremediation and bioremediation for sandy soil contaminated with petroleum hydrocarbons. Int J Environ Sci Dev 7:490

    Article  Google Scholar 

  • Günther T, Dornberger U, Fritsche W (1996) Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33:203–215

    Article  Google Scholar 

  • Han T, Zhao Z, Wang Y (2016) The effect of ryegrass and fertilizer on the petroleum contaminated soil remediation. Feb Fresenius Environ Bull 25(6):2243–2250

    Google Scholar 

  • Harvey PJ, Campanella BF, Castro PM, Harms H, Lichtfouse E, Schäffner AR, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res 9:29–47

    Article  Google Scholar 

  • Hentati O, Lachhab R, Ayadi M, Ksibi M (2013) Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ Monit Assess 185:2989–2998

    Article  Google Scholar 

  • Hou FS, Milke MW, Leung DW, MacPherson DJ (2001) Variations in phytoremediation performance with diesel-contaminated soil. Environ Technol 22:215–222

    Article  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  Google Scholar 

  • Hutchinson SL, Schwab AP, Banks MK (2001) Phytoremediation of aged petroleum sludge: effect of irrigation techniques and scheduling. J Environ Qual 30:1516

    Article  Google Scholar 

  • Idris M, Abdullah SR, Titah HS, Latif MT, Abasa AR, Husin AK, Hanima RF, Ayub R (2016) Screening and identification of plants at petroleum contaminated site in Malaysia for use in phytoremediation. J Environ Sci Manage 19(1):27–36

    Google Scholar 

  • Ikeura H, Kawasaki Y, Kaimi E, Nishiwaki J, Noborio K, Tamaki M (2016) Screening of plants for phytoremediation of oil-contaminated soil. Int J Phytorem 18(5):460–466

    Article  Google Scholar 

  • Johnson DL, Anderson DR, McGrath SP (2005) Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol Biochem 37:2334–2336

    Article  Google Scholar 

  • Joner EJ, Hirmann D, Szolar OH, Todorovic D, Leyval C, Loibner AP (2004) Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment. Environ Pollut 128:429–435

    Article  Google Scholar 

  • Kaimi E, Mukaidani T, Tamaki M (2007) Screening of twelve plant species for phytoremediation of petroleum hydrocarbon-contaminated soil. Plant Product Sci 10:211–218

    Article  Google Scholar 

  • Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH 4 uptake and water holding capacity–results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  Google Scholar 

  • Kathi S, Khan AB (2011) Phytoremediation approaches to PAH contaminated soil. Indian J Sci Technol 4:56–63

    Google Scholar 

  • Kechavarzi C, Pettersson K, Leeds-Harrison P, Ritchie L, Ledin S (2007) Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ Pollut 145:68–74

    Article  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—A review. Soil Biol Biochem 43:1812–1836

    Article  Google Scholar 

  • Lin Q, Mendelssohn IA (1998) The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol Eng 10:263–274

    Article  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    Article  Google Scholar 

  • Liste HH, Alexander M (2000) Plant-promoted pyrene degradation in soil. Chemosphere 40:7–10

    Article  Google Scholar 

  • Liste HH, Felgentreu D (2006) Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl Soil Ecol 31:43–52

    Article  Google Scholar 

  • Liste HH, Prutz I (2006) Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere 62:1411–1420

    Article  Google Scholar 

  • Lu S, Teng Y, Wang J, Sun Z (2010) Enhancement of pyrene removed from contaminated soils by Bidens maximowicziana. Chemosphere 81:645–650

    Article  Google Scholar 

  • Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–53

    Article  Google Scholar 

  • Masu S, Cojocariu L, Bordeian DM, Marinelhorablaga Morariu F (2016) Phytoremediation of oil polluted soils and the effect of petroleum product on the growth of glycine max. Rev Chim 67(9):1774–1777

    Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2004) Phytoremediation in the tropics—The effect of crude oil on the growth of tropical plants. Bioremediat J 8:177–184

    Article  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ Pollut 138:86–91

    Article  Google Scholar 

  • Minai-Tehrani D, Herfatmanesh A (2007) Biodegradation of aliphatic and aromatic fractions of heavy crude oil-contaminated soil: a pilot study. Bioremediat J 11:71–76

    Article  Google Scholar 

  • Miya RK, Firestone MK (2001) Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual 30:1911–1918

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Sparks DL et al (eds) Method of soil analysis, Part III, 3rd edn. ASA and SSSA, Madison, pp 961–1010

    Google Scholar 

  • Nie M, Zhang XD, Wang JQ, Jiang LF, Yang J, Quan ZX, Cui XH, Fang CM, Li B (2009) Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biol Biochem 41:2535–2542

    Article  Google Scholar 

  • Ogbonnaya U, Semple KT (2013) Impact of biochar on organic contaminants in soil: a tool for mitigating risk? Agronomy 3:349–375

    Article  Google Scholar 

  • Palmroth MR, Pichtel J, Puhakka JA (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol 84:221–228

    Article  Google Scholar 

  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65

    Article  Google Scholar 

  • Peng S, Zhou Q, Cai Z, Zhang Z (2009) Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J Hazard Mater 168:1490–1496

    Article  Google Scholar 

  • Pernar N, Baksic D, Antonic O, Grubesic M, Tikvic I, Trupcevic M (2006) Oil residuals in lowland forest soil after pollution with crude oil. Water Air Soil Pollut 177:267–284

    Article  Google Scholar 

  • Phillips LA, Greer CW, Germida JJ (2006) Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem 38(9):2823–2833

    Article  Google Scholar 

  • Phillips LA, Greer CW, Farrell RE, Germida JJ (2009) Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Appl Soil Ecol 42:9–17

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  Google Scholar 

  • Rhoades JD (1996) Salinity: electrical conductivity and total dissolved solids. In: Sparks DL et al (eds) Method of soil analysis, Part III, 3rd edn. ASA and SSSA, Madison, pp 417–436

    Google Scholar 

  • Salanitro JP, Dorn PB, Huesemann MH, Moore KO, Rhodes IA, Rice Jackson LM, Vipond TE, Western MM, Wisniewski HL (1997) Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ Sci Technol 31:1769–1776

    Article  Google Scholar 

  • Shahriari MH, Savaghebi FG, Minaei TD, Padidaran M (2006) The effect of mixed plants Alfalfa (Medicago sativa) and Fescue (Festuca arundinacea) on the phytoremediation of light crude oil in soil. Environ Sci 4(13):33–40

    Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  Google Scholar 

  • Shirdam R, Zand AD, Bidhendi GN, Mehrdadi N (2008) Phytoremediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phytoprotection 89:21–29

    Article  Google Scholar 

  • Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69:483–489

    Article  Google Scholar 

  • Siddiqui S, Adams WA (2002) The fate of diesel hydrocarbons in soils and their effect on the germination of perennial ryegrass. Environ Toxicol 17:49–62

    Article  Google Scholar 

  • Sizmur T, Quilliam R, Puga AP, Moreno-Jiminez E, Beesley L, Gomez-Eyles JL (2016) Application of Biochar for Soil Remediation. In: Guo M, He Z, Uchimiya SM (eds) Agricultural and Environmental Applications of Biochar: Advances and Barriers. SSSA Special Publication, 63, Soil Science Society of America, Inc., Madison, WI, USA, pp 295–324

    Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  Google Scholar 

  • Steiner C, Das KC, Garcia M, Förster B, Zech W (2008) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366

    Article  Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL (ed) Methods of soil analysis. Part III, 3rd edn. American Society of Agronomy, Madison, pp 1201–1229

    Google Scholar 

  • Tang JC, Wang RG, Niu XW, Wang M, Chu HR, Zhou QX (2010) Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors. Biogeosciences 7:3961–3969

    Article  Google Scholar 

  • Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL et al (eds) Method of soil analysis, Part III, 3rd edn. ASA and SSSA, Madison, pp 475–490

    Google Scholar 

  • Thompson OA, Wolf DC, Mattice JD, Thoma GJ (2008) Influence of nitrogen addition and plant root parameters on phytoremediation of pyrene-contaminated soil. Water Air Soil Pollut 189:37–47

    Article  Google Scholar 

  • Tischer S, Hübner T (2002) Model trials for phytoremediation of hydrocarbon-contaminated sites by the use of different plant species. Int J Phytoremediation 4:187–203

    Article  Google Scholar 

  • Vouillamoz J, Milke MW (2001) Effect of compost in phytoremediation of diesel-contaminated soils. Water Sci Technol 43:291–295

    Google Scholar 

  • Wang J, Zhang Z, Su Y, He W, He F, Song H (2008) Phytoremediation of petroleum polluted soil. Pet Sci 5:167–171

    Article  Google Scholar 

  • Wang Z, Xu Y, Zhao J, Li F, Gao D, Xing B (2011) Remediation of petroleum contaminated soils through composting and rhizosphere degradation. J Hazard Mater 190(1):677–685

    Article  Google Scholar 

  • Wang MC, Chen YT, Chen SH, Chien SC, Sunkara SV (2012) Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere 87(3):217–225

    Article  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  Google Scholar 

  • Xu SY, Chen YX, Wu WX, Wang KX, Lin Q, Liang XQ (2006) Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ 363:206–215

    Article  Google Scholar 

  • Zhou QX, Song YF (2004) Remediation of contaminated soils: principles and methods. Science, Beijing, pp 1–489

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Bakhtiari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati, M., Bakhtiari, F., Mowla, D. et al. Total petroleum hydrocarbon degradation in contaminated soil as affected by plants growth and biochar. Environ Earth Sci 76, 688 (2017). https://doi.org/10.1007/s12665-017-7017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7017-7

Keywords

Navigation