Skip to main content
Log in

The effect of different meteorological parameters on the temporal variations of reference evapotranspiration

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Temporal changes of meteorological variables can affect reference evapotranspiration (ET0). The goal of the present research is to analyze the changes of ET0 and identify the impact of effective meteorological parameters to the changes of ET0. For this purpose, daily meteorological data recorded in 30 synoptic stations of Iran during 1960–2014 were used. The annual and seasonal values of ET0 were calculated by the recorded data. To calculate ET0, FAO56 Penman–Monteith method (standard method) was used. The annual and seasonal trends of ET0 and its eight effective parameters were analyzed. Then the contributions of effective parameters changes on ET0 were determined. To analyze ET0 trend at annual and seasonal scales, two common methods, Spearman’s Rho and Mann–Kendall tests, were used. The R 2 = 0.99 showed that the results of the mentioned methods were similar and on the basis of T-statistic <0.057, their difference was not significant (95% confidence level). Therefore, only one method’s results (Spearman’s Rho) were reported. On the basis of Spearman’s Rho results, the annual and seasonal values of ET0 had negative trend in most of arid and semi-arid stations while the trend of this parameter was positive in humid and very humid stations. At annual and seasonal scales, decreasing in wind speed (W), temperature (T), sunshine hours (n), minimum temperature (TN), dew point temperature (TD), maximum temperature (TX), saturation vapor pressure deficit (SVPD) and solar radiation (RS) was observed in 58, 54, 39, 43, 56, 65, 65 and 37% studied stations, respectively. In many scales, the results showed that TX and W were the most effective meteorological variables on ET0 changes and then SVPD was located in second step in arid and semi-arid stations. In humid and very humid stations, W was the first effective parameter at all scales, except autumn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration–guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome

  • Baltas E (2007) Spatial distribution of climatic indices in northern Greece. Meteorol Appl 14:69–78. doi:10.1002/met.7

    Article  Google Scholar 

  • Bandyopadhyay A, Bhadra A, Raghuwanshi NS, Singh R (2009) Temporal trends in estimates of reference evapotranspiration over India. J Hydrol Eng 14(5):508–515. doi:10.1061/(ASCE)HE.1943-5584.0000006

    Article  Google Scholar 

  • Blahušiaková A, Matoušková M (2015) Rainfall and runoff regime trends in mountain catchments (case study area: the upper Hron River basin, Slovakia). J Hydrol Hydromech 63(3):183–192. doi:10.1515/johh-2015-0030

    Google Scholar 

  • Dongsheng Z, Zheng D, Shaohong W, Zhengfang W (2007) Climate changes in northeastern China during last four decades. J Chin Geogr Sci 17:317–324. doi:10.1007/s11769-007-0317-1

    Google Scholar 

  • Fatichi S, Barbosa SM, Caporali E, Silva ME (2009) Deterministic versus stochastic trends: detection and challenges. J Geophys Res 114:1–11. doi:10.1029/2009JD011960

    Article  Google Scholar 

  • Gervais M, Mkhabela M, Bullock P, Raddatz R, Finlay G (2012) Comparison of standard and actual crop evapotranspiration estimates derived from different evapotranspiration methods on the Canadian Prairies. J Hydrol Process 26(10):1467–1477. doi:10.1002/hyp.8279

    Article  Google Scholar 

  • Kahya E, Kalayci S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289(1–4):128–144. doi:10.1016/j.jhydrol.2003.11.006

    Article  Google Scholar 

  • Khalili K, Nazeri Tahrudi M, Khanmohammadi N (2014a) Trend analysis of precipitation in recent two decades over Iran. J Appl Environ Bio Sci 4(1s):5–10

    Google Scholar 

  • Khalili K, Esfandiary S, Khanmohammadi N, Nazeri Tahrudi M (2014b) Half-century air temperature trends in Iran. J Middle East Appl Sci Technol (JMEAST) 8(4):208–213

    Google Scholar 

  • Khanmohammadi N, Rezaie H, Montaseri M, Behmanesh J (2017) The application of multiple linear regression method in reference evapotranspiration trend calculation. J Stoch Environ Res Risk Assess. doi:10.1007/s00477-017-1378-z

    Google Scholar 

  • Kousari MR, Ahani H (2012) An investigation on reference crop evapotranspiration trend from 1975 to 2005 in Iran. Int J Climatol 32:2387–2402. doi:10.1002/joc.3404

    Article  Google Scholar 

  • Li ZL, Xu ZX, Li JY, Li ZJ (2008) Shift trend and step changes for runoff time series in the Shiyang River basin, northwest China. J Hydrol Process 22:4639–4646. doi:10.1002/hyp.7127

    Article  Google Scholar 

  • Li Z, Li Z, Xu Z, Zhou X (2013) Temporal variations of reference evapotranspiration in Heihe River basin of China. J Hydrol Res 44(5):904–916. doi:10.2166/nh.2012.125

    Article  Google Scholar 

  • Liu Q, Yang Z, Cui B, Sun T (2010) The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin, China. J Hydrol Process 24:2171–2181. doi:10.1002/hyp.7649

    Article  Google Scholar 

  • Mavrakis A, Papavasileiou H (2013) NDVI and E. de Martonne indices in an environmentally stressed area (Thriasio Plain-Greece). Proedia Technol 8:477–481. doi:10.1016/j.protcy.2013.11.062

    Article  Google Scholar 

  • Rahmat SN, Jayasuriya N, Adnan MSh, Bhuiyan M (2016) Analysis of spatio-temporal trends using Standardized Precipitation Index (SPI). ARPN J Eng Appl Sci 11(4):2387–2392

    Google Scholar 

  • Rezaie H, Khalili K, Khanmohammadi N, Nazeri Tahrudi M (2014) Surface air temperature trends during the last 20 years in Iran. J Appl Environ Biol Sci 4(1s):40–46

    Google Scholar 

  • Rio SD, Herrero L, Pinto-Gomes C, Peras A (2011) Spatial analysis of mean temperature trends in Spain over the period 1961–2006. J Global Planetary Change 78(1–2):65–75. doi:10.1016/j.gloplacha.2011.05.012

    Google Scholar 

  • Rosmann T, Domínguez E, Chavarro J (2016) Comparing trends in hydrometeorological average and extreme data sets around the world at different time scales. J Hydrol Reg Stud 5:200–212. doi:10.1016/j.ejrh.2015.12.061

    Article  Google Scholar 

  • Shadmani M, Marofi S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. J Water Resour Manag 26:211–224. doi:10.1007/s11269-011-9913-z

    Article  Google Scholar 

  • Shi Z, Xu L, Yang X, Guo H, Dong L, Song A, Zhang X, Shan N (2017) Trends in reference evapotranspiration and its attribution over the past 50 years in the Loess Plateau, China: implications for ecological projects and agricultural production. J Stoch Environ Res Risk Assess 31:257–273. doi:10.1007/s00477-015-1203-5

    Article  Google Scholar 

  • Stafford JM, Wendler G, Curtis J (2000) Temperature and precipitation of Alaska: 50 year trend analysis. J Theor Appl Climatol 67:33–44. doi:10.1007/s007040070014

    Article  Google Scholar 

  • Tabari H, Hosseinzadeh-Talaee P (2011a) Recent trends of mean maximum and minimum air temperatures in the western half of Iran. J Meteorol Atmos Phys 111:121–131. doi:10.1007/s00703-011-0125-0

    Article  Google Scholar 

  • Tabari H, Hosseinzadeh-Talaee P (2011b) Analysis trends in temperature data in arid and semi-arid regions of Iran. J Atmos Res 79:1–10. doi:10.1016/j.gloplacha.2011.07.008

    Google Scholar 

  • Tabari H, Marofi S, Aeini A, Talaee PH, Mohammadi K (2011) Trend analysis of reference evapotranspiration in the western half of Iran. J Agric For Meteorol 151:128–136. doi:10.1016/j.agrformet.2010.09.009

    Article  Google Scholar 

  • Tabari H, Aeini A, Hosseinzadeh Talaee P, Shifteh Some’e B (2012a) Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran. J Hydrol Process 26:500–512. doi:10.1002/hyp.8146

    Article  Google Scholar 

  • Tabari H, Nikbakht J, Hosseinzadeh Talaee P (2012b) Identification of trend in reference evapotranspiration series with serial dependence in Iran. J Water Resour Manag 26:2219–2232. doi:10.1007/s11269-012-0011-7

    Article  Google Scholar 

  • Tabari H, Nikbakht J, Shifteh Some’e B (2012c) Investigation of groundwater level fluctuations in the north of Iran. J Environ Earth Sci 66:231–243. doi:10.1007/s12665-011-1229-z

    Article  Google Scholar 

  • Temesgen B (1996) Temperature and humidity data correction for calculating reference evapotranspiration at nonreference weather stations. Utah State Univ, Logan

    Google Scholar 

  • Tukimat NNA, Harun S, Shahid Sh (2012) Comparison of different methods in estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia. J Agric Rural Dev Trop Subtrop 113(1):77–85

    Google Scholar 

  • Xu CY, Gong LB, Jiang T, Chen DL, Singh VP (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 327:81–93. doi:10.1016/j.jhydrol.2005.11.029

    Article  Google Scholar 

  • Yang XL, Xu LR, Liu KK, Li CH, Hu J, Xia XH (2012) Trends in temperature and precipitation in the Zhangweinan River Basin during the last 53 Years. J Procedia Environ Sci 13:1966–1974. doi:10.1016/j.proenv.2012.01.190

    Article  Google Scholar 

  • Yaning C, Changchun X, Xingming H, Weihong L, Yapeng C, Chenggang Z, Zhaoxia Y (2009) Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. J Quat Int 208(1–2):53–61. doi:10.1016/j.quaint.2008.11.011

    Article  Google Scholar 

  • Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271. doi:10.1016/S0022-1694(01)00594-7

    Article  Google Scholar 

  • Zhang Q, Liu C, Xu CY, Xu YP, Jiang T (2006) Observed trends of water level and streamflow during past 100 years in the Yangtze River basin, China. J Hydrol 324:255–265. doi:10.1016/j.jhydrol.2005.09.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Behmanesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanmohammadi, N., Rezaie, H., Montaseri, M. et al. The effect of different meteorological parameters on the temporal variations of reference evapotranspiration. Environ Earth Sci 76, 540 (2017). https://doi.org/10.1007/s12665-017-6871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6871-7

Keywords

Navigation