Skip to main content

Advertisement

Log in

Groundwater mixing in the discharge area of San Vittorino Plain (Central Italy): geochemical characterization and implication for drinking uses

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Discharge areas of carbonate fractured and karstified aquifers are a sensitive system of great interest, where frequently groundwater resources are tapped for drinking water supply. In geological settings affected by recent and/or active tectonics, mixing between fresh water coming from recharge areas and groundwater from deeper circuits, influenced by raising fluids, influences hydrogeochemistry. Surveys on major ions, trace elements and stable isotopes have been performed in the San Vittorino Plain (Central Italy), where the major source of drinking water for Rome is located (Peschiera Springs, mean discharge 18 m3 s−1, half of them tapped). Results of 21 springs revealed different contribution from recharge areas and deep flow paths, by increasing salinity and ion content, with particular references to Ca2+, HCO3 and SO4 2−. Three main groups, respectively, related to fresh waters from recharge areas, groundwater from deep contribution and a mixing group between them, have been identified. Water stable isotopes allow to identify the common origin from rainfall and a very steady contribution with seasons and year, due to the huge extent of recharge area (>1000 km2). Saturation Indexes gave insight on the contribution of deep fluids, mainly CO2 and H2S, which turned groundwater to undersaturated conditions, facilitating rock dissolution. By PHREEQC software, the mixing between two considered end-members has been simulated, evaluating about 25% of deep contribution in the basal springs of San Vittorino Plain. Chemistry of Peschiera spring reveals a very limited percentage of deep flow paths (10%), which can lead to slight hydrochemistry changes even in possible drought conditions, when discharge can decrease until 15 m3 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe Y, Aravena R, Zopfi J, Parker B, Hunkeler D (2009) Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods. J Contam Hydrol 107:10–21

    Article  Google Scholar 

  • Acero P, Auquè LF, Galve JP, Gutierrez F, Carbonel D, Gimeno MJ, Yechieli Y, Asta MP, Gomez GB (2015) Evaluation of geochemical and hydrogeochemical processes by geochemical modelling in an area affected by evaporite karsification. J Hydrol 529:1874–1889

    Article  Google Scholar 

  • Allègre CJ (2008) Isotope geology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Andreo B, Vias J, Duran JJ, Jimenez P, Lopez-Geta JA, Carrasco F (2008) Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in Southern Spain. Hydrogeol J 16:911–925

    Article  Google Scholar 

  • APHA, Awwa, WEF, (2012) Standard Methods for examination of water and wastewater, 22nd edn. American Public Health Association, Washington, 1360 p

  • Aquilina L, Ladouche B, Dorfliger N (2005) Recharge processes in karstic systems investigated through the correlation of chemical and isotopic composition of rain and spring-waters. Appl Geochem 20:2189–2206

    Article  Google Scholar 

  • Bakalowics M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160

    Article  Google Scholar 

  • Banner JL, Musgrove M, Capo RC (1994) Tracing groundwater evolution in a limestone aquifer using Sr isotopes effects of multiple sources of dissolved ions and mineral–solution reactions. Geology 22:687–690

    Article  Google Scholar 

  • Barbieri M, Morotti M (2003) Hydrogeochemistry and strontium isotopes of spring and mineral waters from Monte Vulture Volcano, Italy. Appl Geochem 18:117–125

    Article  Google Scholar 

  • Barbieri M, Boschetti T, Petitta M, Tallini M (2005) Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Appl Geochem 20:2063–2208. doi:10.1016/j.apgeochem.2005.07.008

    Article  Google Scholar 

  • Bison PL, Normand M, Piovesana F, Zuppi GM (1989) Contribution des isotopes des l environnment al etude de la recharge naturelle des aquife´res fissure´s du bouclier soudanien au Burkina-Faso. Hydrogeologie 3:201–214

    Google Scholar 

  • Carucci V, Petitta M, Aravena R (2012) Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: a multi-isotope approach and geochemical modeling. Appl Geochem 27:266–280

    Article  Google Scholar 

  • Caschetto M, Barbieri M, Galassi DMP, Mastrorillo L, Rusi S, Stoch F, Di Ciocco A, Petitta M (2014) Human alteration of groundwater-surface water interactions (Sagittario River, Central Italy): implication for flow regime, contaminant fate and invertebrate response. Environ Earth Sci 71:1791–1807

    Article  Google Scholar 

  • Caschetto M, Galassi DMP, Petitta M, Aravena M (2017) Evaluation of the sources of nitrogen compounds and their influence on the biological communities in the hyporheic zone of the Sagittario River, Italy: an isotopic and biological approach. Ital J Geosci. doi:10.3301/IJG.2016.07

    Google Scholar 

  • Centamore E, Nisio S (2002) Quaternary morfodinamic between the velino and salto valleys. Stud Geol Camerti Vol Spec 1999:37–44

    Google Scholar 

  • Centamore E, Nisio S, Sabatinelli A (1999) Nuovi dati sull’assetto geologico-strutturale e morfotettonico della Piana di S. Vittorino (zona d’incontro tra Umbria-Marche e Lazio-Abruzzi, Lazio nord-orientale- Rieti). Boll Serv Geol Naz, 69

  • Centamore E, Nisio S, Rossi D (2009) The San Vittorino Sinkhole Plain: relationships between bedrock structure, sinking processes, seismic events and hydrothermal springs. Ital J Geosci 128:629–639

    Google Scholar 

  • Chiodini G, Frondini F, Marini L (1995) Theoretical geothermometers and pCO2 indicators for aqueous solution coming from hydrothermal systems of medium-low temperature hosted in carbonate–evaporite rocks. Application to the thermal springs of the Etruscan Swell. Italy Appl Geochem 10:337–346. doi:10.1016/0883-2927(95)00006-6

    Article  Google Scholar 

  • Cook P, Herczeg AL (2000) Environmental tracers in subsurface hydrology. Springer, New York

    Book  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703. doi:10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Del Bon A, Sbarbati C, Brunetti E, Carucci V, Lacchini A, Marinelli V, Petitta M (2015) Groundwater flow and geochemical modeling of the Acque Albule thermal basin (Central Italy): a conceptual model for evaluating influences of human exploitation on flow path and thermal resource availability. Cent Eur Geol 58(1-2):152–170

    Article  Google Scholar 

  • Dotsika E, Poutoukis D, Kloppmann W, Guerrot C, Voutsa D, Kouimtzis TH (2010) The use of O, H, B, Sr and S isotopes for tracing the origin of dissolved boron in groundwater in Central Macedonia, Greece. Appl Geochem 25:1783–1796. doi:10.1016/j.apgeochem.2010.09.006

    Article  Google Scholar 

  • EC-European Commision (2015) Amendements 2015/1787 of 6 October 2015 to the drinking water directive. Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption

  • EC-European Commission (2007) Common implementation strategy for the water framework directive: guidance on groundwater in drinking water protected areas. Guidance document no. 16

  • Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491

    Article  Google Scholar 

  • Fiorillo F, Pagnozzi M, Ventafridda G (2015) A model to simulate recharge processes of karst massifs. Hydrol Process 29:2301–2314

    Article  Google Scholar 

  • Frost CD, Toner R (2004) Strontium isotopic identification of water–rock interaction and ground water mixing. Groundwater 42(3):418–432

    Article  Google Scholar 

  • Giustini F, Blessing M, Brilli M, Lombardi S, Voltattorni N, Widory D (2013) Determining the origin of carbon dioxide and methane in the gaseous emissions of the San Vittorino Plain (Central Italy) by means of stable isotopes and noble gas analysis. Appl Geochem 34:90–101. doi:10.1016/j.apgeochem.2013.02.015

    Article  Google Scholar 

  • Gupta S, Nayek S, Saha SN (2012) Major ion chemistry and metal distribution in coal mine pit lake contaminated with industrial effluents: constraints of weathering and anthropogenic inputs. Environ Earth Sci 67:2053–2061

    Article  Google Scholar 

  • Han G, Liu CQ (2004) Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province China. Chem Geol 204:1–21

    Article  Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiller M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52(3):218–242

    Article  Google Scholar 

  • Hunkeler D, Aravena R, Cox E (2002) Carbon isotopes as a tool to evaluate the origin and fate of vinyl chloride: laboratory experiments and modeling of isotope evolution. Environ Sci Technol 36:3378–3384

    Article  Google Scholar 

  • Hunkeler D, Aravena R, Berry-Spark K, Cox E (2005) Assessment of degradation pathways in an aquifer with mixed chlorinated hydrocarbon contamination using stable isotope analysis. Environ Earth Sci 39:5975–5981

    Google Scholar 

  • Jalali M (2009) Geochemistry characterization of groundwater in an agricultural area of Razan Hamadan, Iran. Environ Geol 56:1479–1488. doi:10.1007/s00254-008-1245-9

    Article  Google Scholar 

  • Jorgensen NO, Banoeng-Yakubo BK (2001) Environmental isotopes (18O, 2H and 87Sr/86Sr) as a tool in groundwater investigation in the Keta Basin, Ghana. Hydrogeol J 9:190–201

    Article  Google Scholar 

  • Katz BG, Bullen TD (1996) The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst. Geochim Cosmochim Acta 60:5075–5087

    Article  Google Scholar 

  • Langmuir D (1971) The geochemistry of some carbonate ground waters in central Pennsylvania. Geochim Cosmochim Acta 33:1023–1045

    Article  Google Scholar 

  • Lauber U, Goldscheider N (2014) Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karst system (Wetterstein Mountains, Germany). Hydrogeol J 22(8):1807–1824

    Article  Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88. doi:10.1016/S0022-1694(02)00281-0

    Article  Google Scholar 

  • Masi U, Tucci P, Azzaro E (1995) Chemiostratigrafia e petrografia della formazione dolomitica triassica di Antrodoco (Rieti, Lazio settentrionale). Geol Romana 31:307–318

    Google Scholar 

  • Mekenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol 75:215–255

    Article  Google Scholar 

  • Minissale A, Kerrick DM, Magro G, Murrell MT, Paladini M, Rihs S, Sturchio NC, Tassi F, Vaselli O (2002) Geochemistry of quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatic implications. Earth Planet Sci Lett 203:709–728. doi:10.1016/S0012-821X(02)00875-0

    Article  Google Scholar 

  • Morgantini N, Frondini F, Cardellini C (2009) Natural trace elements baselines and dissolved loads in groundwater from carbonate aquifers of Central Italy. Phys Chem Earth 34:520–529

    Article  Google Scholar 

  • Naftz DL, Peterman ZE, Spangler LE (1997) Using δ87Sr values to identify sources of salinity to a freshwater aquifer, greater Aneth Oil Field, Utah, USA. Chem Geol 141:195–209

    Article  Google Scholar 

  • Negrel P, Casanova J, Azaroual M, Guerrot C, Cocherie A, Fouillac C (1999) Isotope geochemistry of mineral spring waters in the Massif Central France. In: Armannsson H (ed) Geochemistry of Earth's Surface. The Netherlands, Rotterdam

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) A computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculations. US Geological Survey Water Resources Investigations Report 95, 4259 Denver Colorado

  • Peiffer L, Taran YA, Lounejeva E, Pichardo GF, Rouwet D, Bernard-Romero RA (2011) Tracing thermal aquifers of El Chich6n volcano-hydrothermal system (México) with 87Sr/86Sr, Ca/Sr and REE. J Volcanol Geotherm Res 205:55–66. doi:10.1016/jjvolgeores2011.06.00

    Article  Google Scholar 

  • Petelet-Giraud E, Luck JM, Ben Othman D, Negrel P (2003) Dynamic scheme of water circulation in karstic aquifers as constrained by Sr and Pb isotopes. Application to the He´rault watershed, Southern France. Hydrogeol J 11(5):560–573

    Article  Google Scholar 

  • Petitta M (2009) Hydrogeology of the middle valley of the Velino river and of the S. Vittorino plain (Rieti, Central Italy). Ital J Eng Geol Environ. doi:10.4408/IJEGE.2009-01.O-09

    Google Scholar 

  • Petitta M, Fracchiolla D, Aravena R, Barbieri M (2009) Application of isotopic and geochemical tools for the evaluation of nitrogen cycling in an agricultural basin, the Fucino Plain, Central Italy. J Hydrol 372:124–135

    Article  Google Scholar 

  • Petitta M, Primavera P, Tuccimei P, Aravena R (2011) Interaction between shallow and deep ground waters systems in areas affected by quaternary tectonics (Central Italy): a geochemical and isotope approach. Environ Earth Sci 63:11–30. doi:10.1007/s12665-010-0663-7

    Article  Google Scholar 

  • Salvati R, Sasowsky I (2002) Development of collapse sinkholes in areas of groundwater discharge. J Hydrol 164:1–11

    Article  Google Scholar 

  • Sappa G, Ergul S, Ferranti F, Sweya LN, Luciani G (2015) Effects of seasonal change and seawater intrusion on water quality for drinking and irrigation purposes, in coastal aquifers of Dar es Salaam, Tanzania. J Afr Earth Sci 105:64–84. doi:10.1016/j.jafrearsci.2015.02.007

    Article  Google Scholar 

  • Sidle WC (1998) Environmental isotopes for resolution of hydrology problems. Environ Monit Assess 52:389–410

    Article  Google Scholar 

  • Thomas J, Rose T (2003) Environmental isotopes in hydrogeology. Environ Geol 43(5):532

    Google Scholar 

  • Toumi N, Hussein BHM, Rafrafi S (2015) Groundwater quality and hydrochemical properties of Al-Ula region Saudi Arabia. Environ Monit Assess 187:84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Petitta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbieri, M., Nigro, A. & Petitta, M. Groundwater mixing in the discharge area of San Vittorino Plain (Central Italy): geochemical characterization and implication for drinking uses. Environ Earth Sci 76, 393 (2017). https://doi.org/10.1007/s12665-017-6719-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6719-1

Keywords

Navigation