Skip to main content

Advertisement

Log in

Modeling the effect of land use and climate change scenarios on future soil loss rate in Kasilian watershed of northern Iran

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Accelerated erosion processes caused by global climate and land use changes in many regions of the world constitute a major restrictive factor in their sustainability. This study proposes a method to estimate soil loss rate under changes in future land use and climate in Kasilian watershed of northern Iran within two periods. The first period is related to current climate and land use (1991–2010), and the second concerns climate and land use scenarios (2011–2030). Downscaling global climate model projections of future climate was applied at the regional scale. A statistical downscaling model was then used to downscale precipitation for three scenarios, i.e., 10% increase in rainfall, 10% decrease in rainfall, and unchanged rainfall. Next, cellular automata–Markov model was used for characterization based on two scenarios of land use future that were designed using suitability maps. The soil loss mean for the current period was found to be 6.3 t \({\text{ha}}^{ - 1} \;{\text{year}}^{ - 1}\), thereby indicating a low sustainability of soils. The results of simulated soil loss maps indicate a similar pattern in spatial distribution of loss rates compared with those of current periods, but the amount of risk has increased such that simulated erosion mean was 31–58% higher than the current period in all scenarios. Soil loss is thoroughly influenced by climate and land cover patterns in future. In other words, rainfall erosivity has increased by 20 MJ mm \({\text{ha}}^{ - 1} {\text{h}}^{ - 1} {\text{year}}^{ - 1}\), based on unchanged rainfall scenario and National Centers for Environmental Prediction data, simulated that cover management factor has increased by 35% compared with the current period. However, simulations indicated that land use changes may potentially induce much larger changes in erosion. The results also showed that soil loss is closely related to land use change and various scenarios of climate change and that revised universal soil loss equation is suitable model to investigate these relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alkharabsheh M, Alexandridis TK, Bilas G, Misopolinos N, Silleos N (2013) Impact of land cover change on soil erosion hazard in northern Jordan using remote sensing and GIS. Procedia Environ Sci 19:912–921. doi:10.1016/j.proenv.2013.06.101

    Article  Google Scholar 

  • Alsharif AAA, Pradhan B (2014) Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arab J Geosci 7(10):4291–4301. doi:10.1007/s12517-013-1119-7

    Article  Google Scholar 

  • Alsharif AAA, Pradhan B (2015) Predicting the spatial patterns of urban expansion by combining the Chi squared automatic integration detection decision tree, markov chain, and cellular automata models in GIS. Geocarto Int 30(8):858–881. doi:10.1080/10106049.2014.997308

    Article  Google Scholar 

  • Arsanjani J, Helbich M, Kainz W, Boloorani AD (2013) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf 21:265–275

    Article  Google Scholar 

  • Auerswald K, Fiener P, Martin W, Elhaus D (2014) Use and misuse of the K factor equation in soil erosion modeling: An alternative equation for determining USLE nomograph soil erodibility values. CATENA 118:220–225. doi:10.1016/j.catena.2014.01.008

    Article  Google Scholar 

  • Biro K, Pradhan B, Buchroithner MF, Makeschin F (2013) An assessment of land use/land-cover change impacts on soil properties in the northern part of Gadarif region, Sudan. Land Degrad Dev 24(1):90–102. doi:10.1002/ldr.1116

    Article  Google Scholar 

  • Chen T, Niu R, Li P, Zhang L, Du B (2011) Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun Watershed, North China. Environ Earth Sci 63:533–541. doi:10.1007/s12665-010-0715-z

    Article  Google Scholar 

  • Chu JT, Xia J, Xu CY, Singh VP (2010) Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor Appl Climatol 99:149–161. doi:10.1007/s00704-009-0129-6

    Article  Google Scholar 

  • Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practice, 2nd edn. CRC/Taylor & Francis, Boca Raton, p 183p

    Google Scholar 

  • Dharmarathna WRSS, Herath S, Weerakoon SB (2014) Changing the planting date as a climate change adaptation strategy for rice production in Kurunegala district, Sri Lanka. Sustain Sci 9:103–111

    Article  Google Scholar 

  • Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307(1–4):145–163

    Article  Google Scholar 

  • Hashmi MZ, Shamseldin AY, Melville BW (2011) Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch Environ Res Risk Assess 25(4):475–484. doi:10.1007/s00477-010-0416-x

    Article  Google Scholar 

  • Hassan Z, Shamsudin S, Harun S (2014) Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theor Appl Climatol 116:243–257. doi:10.1007/s00704-013-0951-8

    Article  Google Scholar 

  • Hoomehr S, Schwartz J, Yoder D (2016) Potential changes in rainfall erosivity under GCM climate change scenarios for the southern Appalachian region, USA. CATENA 136:141–151. doi:10.1016/j.catena.2015.01.012

    Article  Google Scholar 

  • Imeson AC, Lavee H (1998) Soil erosion and climate change: the transect approach and the influence of scale. Geomorphology 23:219–227. doi:10.1016/S0169-555X(98)00005-1

    Article  Google Scholar 

  • Jiang L, Yao Z, Liu Z, Wu S, Wang R, Wang L (2015) Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE. Nat Hazards 76:1831–1847. doi:10.1007/s11069-014-1569-6

    Article  Google Scholar 

  • Karamesouti M, Petropoulos G, Papanikolaou D, Kairis O, Kosmas K (2016) Erosion rate reductions from PESERA and RUSLE at a Mediterranean site before and after a wildfire: comparison and implications. Geoderma 261:44–58. doi:10.1016/j.geoderma.2015.06.025

    Article  Google Scholar 

  • Khosrokhani M, Pradhan B (2014) Spatio-temporal assessment of soil erosion at Kuala Lumpur metropolitan city using remote sensing data and GIS. Geomat Nat Haz Risk 5(3):252–270. doi:10.1080/19475705.2013.794164

    Article  Google Scholar 

  • Klike A, Eitzinger J (2010) Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. J Agric Sci 148:529–541. doi:10.1017/S0021859610000158

    Article  Google Scholar 

  • Li Q, Yu P, Li G, Zhou D, Chen X (2014) Overlooking soil erosion induces underestimation of the soil C loss in degraded land. Quatern Int 394:287–290. doi:10.1016/j.quaint.2014.05.034

    Article  Google Scholar 

  • Litschert S, Theobald D, Brown T (2014) Effects of climate change and wildfire on soil loss in the Southern. CATENA 118:206–219. doi:10.1016/j.catena.2014.01.007

    Article  Google Scholar 

  • Liu L, Liu Z, Ren X, Fischer T, Xu Y (2011) Hydrological impacts of climate change in the Yellow River Basin for the 21st century using hydrological model and statistical downscaling model. Quat Int 244(2):211–220

    Article  Google Scholar 

  • Maeda E, Petri K, Siljander M, Clark B (2010) Potential impacts of agricultural expansion and climate change on soil erosion in the Eastern Arc Mountains of Kenya. Geomorphology 123:279–289

    Article  Google Scholar 

  • Mitsova D, Shuster W, Wang XH (2011) A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plan 99:141–153. doi:10.1016/j.landurbplan.2010.10.001

    Article  Google Scholar 

  • Mondal A, Khare D, Kundu S, Meena P, Mishra P, Shukla R (2015) Impact of climate change on future soil erosion in different slope, land use, and soil-type conditions in a part of the Narmada River Basin, India. J Hydrol Eng. doi:10.1061/(ASCE)HE.1943-5584.0001065

    Google Scholar 

  • Moore ID, Burch GJ (1986) Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci Soc Am J 50:1294–1298. doi:10.2136/sssaj1986.03615995005000050042x

    Article  Google Scholar 

  • Mullan D, Favis-Mortlock D, Fealy R (2012) Addressing key limitations associated with modeling soil erosion under the impacts of future climate change. Agric For Meteorol 156:18–30. doi:10.1016/j.agrformet.2011.12.004

    Article  Google Scholar 

  • Neal M, Nearing MA, Vining R, Southworth J, Pfeifer A (2005) Climate change impacts on soil erosion in Midwest United States with changes in crop management. CATENA 61:165–184. doi:10.1016/j.catena.2005.03.003

    Article  Google Scholar 

  • Nearing AM (2001) Potential changes in rainfall erosivity in the U.S. with climate change during the 21st century. J Soil Water Conserv 56(3):229–232

    Google Scholar 

  • Nearing MA, Jetten V, Baffaut C (2005) Modeling response of soil erosion and runoff to changes in precipitation and cover. CATENA 61(2–3):131–154. doi:10.1016/j.catena.2005.03.007

    Article  Google Scholar 

  • Pan J, Wen Y (2014) Estimation of soil erosion using RUSLE in Caijiamiao watershed, China. Nat Hazards 71:2187–2205. doi:10.1007/s11069-013-1006-2

    Article  Google Scholar 

  • Paroissein J, Darboux F, Couturier A, Devillers B, Mouillot F, Raclot D, Bissonnais Y (2015) A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France). J Environ Manag 150:57–68. doi:10.1016/j.jenvman.2014.10.034

    Article  Google Scholar 

  • Plangoen P, Babel M (2014) Projected rainfall erosivity changes under future climate in the Upper Nan Watershed, Thailand. J Earth Sci Clim Change 5(10):1–7

    Google Scholar 

  • Plangoen P, Babel M, Clemente R, Shrestha S, Tripthi N (2013) Simulating the impact of future land use and climate change on soil erosion and deposition in the mae nam nan sub-catchment, Thailand. Sustainability 5:3244–3274. doi:10.3390/su5083244

    Article  Google Scholar 

  • Poska A, Sepp E, Veski S, Koppel K (2008) Using quantitative pollenbased land-cover estimations and a spatial CA Markov model to reconstruct the development of cultural landscape at Rouge, South Estonia. Veg Hist Archaeobot 17:527–541. doi:10.1007/s00334-007-0124-8

    Article  Google Scholar 

  • Pradhan B, Chaudhari A, Adinarayana J, Buchroithner MF (2012) Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: a case study at Penang Island, Malaysia. Environ Monit Assess 184(2):715–727. doi:10.1007/s10661-011-1996-8

    Article  Google Scholar 

  • Prasannakumar V, Vijith H, Abinod S, Geetha N (2013) Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geosci Front 3(2):209–215. doi:10.1016/j.gsf.2011.11.003

    Article  Google Scholar 

  • Pruski FF, Nearing MA (2002) Climate-induced changes in erosion during the 21st century for eight U.S. locations. Water Resour Res 38(12):34–44

    Article  Google Scholar 

  • Quan B, Romkens M, Li R, Wang F, Chen J (2011) Effect of land use and land cover change on soil erosion and the spatio-temporal variation in Liupan Mountain Region, southern Ningxia, China. Front Environ Sci Eng 5(4):564–572. doi:10.1007/s11783-011-0348-9

    Article  Google Scholar 

  • Ranzi R, Le T, Rulli M (2012) A RUSLE approach to model suspended sediment load in the Lo river (Vietnam): effects of reservoirs and land use changes. J Hydrol 422–423:17–29. doi:10.1016/j.jhydrol.2011.12.009

    Article  Google Scholar 

  • Renard KG, Foster GA, Weesies DA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook. USDA, Washington, DC, p 557

    Google Scholar 

  • Rizee HM, Saharkhiz MA, Pradhan B, Ahmad N (2016) Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto International 31(10):1158–1177. doi:10.1080/10106049.2015.1120354

    Article  Google Scholar 

  • Routschek A, Schmidt J, Kreienkamp F (2014) Impact of climate change on soil erosion—a high-resolution projection on catchment scale until 2100 in Saxony/Germany. CATENA 121:99–109. doi:10.1016/j.catena.2014.04.019

    Article  Google Scholar 

  • Samat N, Hasni R, Elhadari YAE (2011) Modelling land use changes at the peri-urban areas using GEO-GRAPHIC information systems and cellular automata model. J Sustain Dev 4(6):72–84

    Article  Google Scholar 

  • Sang L, Zhang C, Yang J, Zhu D, Yun W (2011) Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math Comput Model 54:938–943

    Article  Google Scholar 

  • Segura C, Sun G, Mcnulty S, Zhang Y (2014) Potential impacts of climate change on soil erosion vulnerability across the conterminous United States. J Soil Water Conserv 69:171–181. doi:10.2489/jswc.69.2.171

    Article  Google Scholar 

  • Sharma A, Tiwari K, Bhadoria PBS (2011) Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ Monit Assess 173:789–801. doi:10.1007/s10661-010-1423-6

    Article  Google Scholar 

  • Shrestha B, Babel MS, Maskey S, Griensven AV, Uhlenbrook S, Green A, Akkharath I (2013) Impact of climate change on sediment yield in the Mekong River basin: a case study of the Nam Ou basin, Lao PDR. Hydrol Earth Syst Sci 17:1–20. doi:10.5194/hess-17-1-2013

    Article  Google Scholar 

  • Simonneaux V, Cheggour A, Deschamps C, Mouillot F, Cerdan O, Bissonnais Y (2015) Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco). J of Ari Environ 122:64–75. doi:10.1016/j.jaridenv.2015.06.002

    Article  Google Scholar 

  • Stanchi S, Godone D, Freppaz M, Zanini E (2013) Assessing the susceptibility of alpine soils to erosion using soil physical and site indicators. Soil Use Manag. doi:10.1111/sum.12063

    Google Scholar 

  • Stanchi S, Freppaz M, Ceaglio E, Maggioni M, Meusburger K, Alewell C, Zanini E (2014) Soil erosion in an avalanche release site (Valle d’Aosta: Italy): towards a winter factor for RUSLE in the Alps. Nat Hazards Earth Syst Sci 14:1761–1771

    Article  Google Scholar 

  • Turnbull L, Parsons AJ, Wainwright J, Anderson JP (2013) Runoff responses to long-term rainfall variability in a shrub-dominated catchment. J Arid Environ 91:88–94. doi:10.1016/j.jaridenv.2012.12.002

    Article  Google Scholar 

  • Van der Knijff JM, Jones RJA, Montanarella L (2000) Soil erosion risk assessment in Europe. EUR 19044 EN. Office for Official Publications of the European Communities. Luxembourg. 34 pp

  • Wijitkosum S (2012) Impacts of land use changes on soil erosion in Pa Deng Sub-district, adjacent area of Kaeng Krachan National Park, Thailand. Soil Water Resour 7:10–17

    Google Scholar 

  • Wilby RL, Dawson CW, Barrow EM (2002) SDSM—a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17(2):145–157. doi:10.1016/s1364-8152(01)00060-3

    Article  Google Scholar 

  • Wilson TS, Sleeter BM, Davis AW (2015) Potential future land use threats to California protected areas. Reg Environ Ch 15:1051–1064

    Article  Google Scholar 

  • Wischmeier WH (1971) A soil erodibility nomograph for farmland and construction sites. J Soil Water Conserv 26:189–193

    Google Scholar 

  • Wischmeier W, Smith D (1978) Predicting rainfall erosion losses. A guide to conservation planning. USDA. Agr Res Serv Handbook. 537 pp

  • Xu L, Xu X, Meng X (2012) Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with information diffusion model: a case study of Bohai Rim, China. CATENA 100:74–82. doi:10.1016/j.catena.2012.08.012

    Article  Google Scholar 

  • Yildirim U (2012) Assessment of soil erosion at the Deðirmen Creek watershed area. Afyonkarahisar, Turkey, pp 73–80. doi: 10.5053/isepp.2011.1-7

  • Zhang XC, Liu WZ, Zheng FL (2009) Simulating site-specific impacts of climate change on soil erosion and surface hydrology in southern Loess Plateau of China. CATENA 79:237–242. doi:10.1016/j.catena.2009.01.006

    Article  Google Scholar 

  • Zhang RQ, Tang CJ, Ma SH, Yuan H, Gao LL, Fan WY (2011) Using Markov chains to analyze changes in wetland trends in arid Yinchuan Plain, China. Math Comput Model 54:924–930. doi:10.1016/j.mcm.2010.11.017

    Article  Google Scholar 

  • Zhang B, He C, Burnham M, Zhang L (2016) Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Sci Total Environ 539:439–449. doi:10.1016/j.scitotenv.2015.08.132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, M., Mohammady, M. & Pradhan, B. Modeling the effect of land use and climate change scenarios on future soil loss rate in Kasilian watershed of northern Iran. Environ Earth Sci 76, 305 (2017). https://doi.org/10.1007/s12665-017-6626-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6626-5

Keywords

Navigation