Skip to main content
Log in

Chemical assessment of dam water irrigation effects on groundwater qualities in Bigherd plain, Fars Province, Iran

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In this study the effect of irrigation by dam water in Bigherd area (Fars Province, Iran) on groundwater quality 1 and 3 years after dam construction was investigated. To conduct this study the major ion concentrations, including HCO3 , Ca2+, Mg2+, Na+, K+, SO4 2− and Cl and water levels in ten water wells and the dam reservoir were measured during two periods (June 2009 and June 2011), analyzed by factor analysis and plotted in water quality charts. The results of factor analysis show that most of the dissolved ions including Mg2+, Ca2+, SO4 2−, Cl and HCO3 , particularly in 2009, were mainly originated from carbonate and evaporitic formations as well as from the playa lake (Factor 1). In 2011, elevated salinity levels were found to be mainly related to intense evaporation during irrigation that are proportional to Na+ and K+ concentrations (Factor 2) and depend on the type of crop and irrigation method. It was also found that the surface waters from deeper origins had less of an effect on groundwater recharge compared to upstream carbonate aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdi H (2003) Multivariate analysis. In: Lewis-Beck M, Bryman A, Futing T (eds) Encyclopedia for research methods for the social sciences. Sage, Thousand Oaks

    Google Scholar 

  • Alberto WD, Del Pilar DM, Valeria AM, Fabiana PS, Cecilia HA, De Los Angeles BM (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquıa River Basin (Cordoba-Argentina). Water Res 35(12):2881–2894. doi:10.1016/S0043-1354(00)00592-3

    Article  Google Scholar 

  • Alther GA (1979) A simplified statistical sequence applied to routine water quality analysis: a case history. GroundWater 17(6):556–561. doi:10.1111/j.1745-6584.1979.tb03356.x

    Article  Google Scholar 

  • Anderson TW, Rubin H (1956) Statistical inference in factor analysis. In: Neyman J (ed) Proceedings of the third berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, pp 111–150

    Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Amsterdam

    Book  Google Scholar 

  • Arrindell WA, van der Ende J (1985) An empirical test of the utility of the observations-to-variables ratio in factor and components analysis. Appl Psychol Meas 9(2):165–178. doi:10.1177/014662168500900205

    Article  Google Scholar 

  • Baghvand A, Nasrabadi T, Nabi Bidhendi GR, Vosoogh A, Karbassi AR, Mehrdadi N (2010) Groundwater quality degradation of an aquifer in Iran central desert. Desalination 260(1):264–275. doi:10.1016/j.desal.2010.02.038

    Article  Google Scholar 

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010a) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—a case study: Ain Azel plain (Algeria). Geoderma 159(3–4):390–398. doi:10.1016/j.geoderma.2010.08.016

    Article  Google Scholar 

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010b) Multivariate statistical characterization of groundwater quality in Ain Azel plain, Algeria. J Afr Earth Sci 4(8):526–534. doi:10.5897/AJEST10.003

    Google Scholar 

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2011) Statistical categorization geochemical modeling of groundwater in Ain Azel plain (Algeria). J Afr Earth Sci 59(1):140–148. doi:10.1016/j.jafrearsci.2010.09.007

    Article  Google Scholar 

  • Belkhiri L, Mouni L, Boudoukha A (2012) Geochemical evolution of groundwater in an alluvial aquifer: case of El Eulma aquifer, East Algeria. J Afr Earth Sci 66–67:46–55. doi:10.1016/j.jafrearsci.2012.03.001

    Article  Google Scholar 

  • BMDP Statistical Software Inc., LA (1993) Computation with solo power analysis

  • Bouri S, Ben Dhia H (2010) A thirty-year artificial recharge experiment in a coastal aquifer in an arid zone: the Teboulba aquifer system (Tunisian Sahel). CR Geosci 342(1):60–74. doi:10.1016/j.crte.2009.10.008

    Article  Google Scholar 

  • Brainwood MA, Burgin S, Maheshwari B (2004) Temporal variations in water quality of farm dams: impacts of land use and water sources. Agric Water Manag 70(2):151–175. doi:10.1016/j.agwat.2004.03.006

    Article  Google Scholar 

  • Cattell RB (1978) The scientific use of factor analysis. Plenum, New York

    Book  Google Scholar 

  • Cerling TE, Pederson BL, Damm KLV (1989) Sodium–calcium ion exchange in the weathering of shales: implications for global weathering budgets. Geology 17(6):552–554. doi:10.1130/0091-7613(1989)017<0552:SCIEIT>2.3.CO

    Article  Google Scholar 

  • Clark AK, Journey CA (2006) Flow paths in the Edwards aquifer, northern Medina and northeastern Uvalde Counties, Texas, based on hydrologic identification and geochemical characterization and simulation. US Department of the Interior, US Geol, Survey Scientific Investigation Report

  • Costello AB, Osborne JW (2005) Best practice in exploratory factor analysis: four recommendations for getting the most from your analysis. Pract Assess Res Eval. doi:10.1.1.110.9154

  • Dai Z, Samper J, Ritzi JR (2006) Identifying geochemical processes by inverse modeling of multicomponent reactive transport in the Aquia aquifer. Geosphere 2(4):210–219. doi:10.1130/GES00021.1

    Article  Google Scholar 

  • Dhiman SD, Keshari AK (2006) GIS assisted inverse geochemical modeling for plausible phase transfers in aquifers. Environ Geol 50(8):1211–1219. doi:10.1007/s00254-006-0293-2

    Article  Google Scholar 

  • Eary LE, Runnels DD, Esposito KJ (2003) Geochemical controls on groundwater composition at the Cripple Creek Mining District, Colorado. Appl Geochem 18(1):1–24. doi:10.1016/S0883-2927(02)00049-5

    Article  Google Scholar 

  • FAO (2009) FAO Water Report 34, Islamic Republic of Iran

  • Farnham IM, Stetzenbach KJ, Singh AK, Johannesson KH (2000) Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system. Math Geol 32(8):943–968. doi:10.1023/A:1007522519268

    Article  Google Scholar 

  • Fisher RS, Mulican WF (1997) Hydrochemical evolution of sodium–sulfate and sodium–chloride groundwater beneath the Northern Chihuahuan desert, Trans-Pecos, Texas, USA. Hydrogeol J 5(2):4–16. doi:10.1007/s100400050102

    Article  Google Scholar 

  • Gaillardet J, Dupre B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1–4):3–30. doi:10.1016/S0009-2541(99)00031-5

    Article  Google Scholar 

  • Gorsuch RL (1983) Factor analysis, 2nd edn. Erlbaum, Hillsdale

    Google Scholar 

  • Guadagnoli E, Velicer WF (1988) Relation of sample size to the stability of component patterns. Psychol Bull 103(2):265–275. doi:10.1037//0033-2909.103.2.265

    Article  Google Scholar 

  • Güler C, Thyne GD (2002) Geochemical evolution of surface and groundwater in Indian Wells-Owens valley area and surrounding ranges, southeastern California, USA. Geol Soc Am Abstr 33:A16

    Google Scholar 

  • Gupta P, Choudhary R, Vishwakarma M (2009) Assessment of water quality of Kerwa and Kaliasote rivers at Bhopal district for irrigation purpose. Int J Theor Appl Sci 1(2):27–30

    Google Scholar 

  • Henson RK, Roberts JK (2006) Use of exploratory factor analysis in published research: common errors and some comment on improved practice. Educ Psychol Meas 66(3):393–416. doi:10.1177/0013164405282485

    Article  Google Scholar 

  • Jiang Y, Wu Y, Groves C, Yuan D, Kambesis P (2009) Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. J Contam Hydrol 109(1–4):49–61. doi:10.1016/j.jconhyd.2009.08.001

    Article  Google Scholar 

  • Kline P (1979) Psychometrics and psychology. Academic Press, London

    Google Scholar 

  • Kurunc A, Yurekli K, Okman C (2006) Effects of Kilickaya Dam on concentration and load values of water quality constituents in Kelkit Stream in Turkey. J Hydrol 317(1–2):17–30. doi:10.1016/j.jhydrol.2005.05.006

    Article  Google Scholar 

  • Lakshmanan E, Kanan R, Senthil Kumar M (2003) Major ion chemistry and identification of hydrogeochemical processes of groundwater in a part of Kancheepuram district, Tamil Nadu, India. Environ Geosci 10(4):157–166. doi:10.1306/eg100403011

    Article  Google Scholar 

  • Lecomte KL, Pasquini AI, Depetris PJ (2005) Mineral weathering in a semiarid mountain river: its assessment through PHREEQC inverse modeling. Aquat Geochem 11(2):173–194. doi:10.1007/s10498-004-3523-9

    Article  Google Scholar 

  • Lin CY, Abdullah MH, Praveena SM, Yahaya AHB, Musta B (2012) Delineation of temporal variability and governing factors influencing the spatial variability of shallow groundwater chemistry in a tropical sedimentary island. J Hydrol 432–433:26–42. doi:10.1016/j.jhydrol.2012.02.015

    Article  Google Scholar 

  • MacCallum RC, Widaman KF, Zhang S, Hong S (1999) Sample size in factor analysis. Psychol Methods 4(1):84–99. doi:10.1037/1082-989X.4.1.84

    Article  Google Scholar 

  • MacCallum RC, Widaman KF, Preacher KJ, Hong S (2001) Sample size in factor analysis: the role of model error. Multivar Behav Res 36(4):611–637. doi:10.1207/S15327906MBR3604_06

    Article  Google Scholar 

  • Maya AL, Loucks MD (1995) Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. J Hydrol 172(1–4):31–59. doi:10.1016/0022-1694(95)02748-E

    Article  Google Scholar 

  • McDonald RP, Krane WR (1977) A note on local identifiability and degrees of freedom in the asymptotic likelihood ratio test. Br J Math Stat Psychol 30(2):198–203. doi:10.1111/j.2044-8317.1977.tb00739.x

    Article  Google Scholar 

  • McDonald RP, Krane WR (1979) A Monte Carlo study of local identifiability and degrees of freedom in the asymptotic likelihood ratio test. Br J Math Stat Psychol 32(1):121–132. doi:10.1111/j.2044-8317.1979.tb00757.x

    Article  Google Scholar 

  • McLean W, Jankowski J (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililo et al (ed) Proceedings of XXX IAH congress on groundwater: past achievements and future challenges. Cape Town South Africa 26th November–1st December 2000, AA Balkema, Rotterdam, Brookfield

  • Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in Sao Paulo state, Brazil. J Hydrol 250(1–4):78–97. doi:10.1016/S0022-1694(01)00423-1

    Article  Google Scholar 

  • Mirecki JE (2006) Geochemical models of water-quality changes during aquifer storage recovery (ASR) cycle tests, phase I: geochemical models using existing data. ERDC/EL TR-06-8. US Army Corps of Engineers, Engineering Research and Development Center, Vicksburg, MS, USA

  • Monjerezi M, Vogt RD, Aagaard P, Saka JDK (2011) Hydro-geochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: an integrated application of hierarchical cluster and principal component analyses. Appl Geochem 26(8):1399–1413. doi:10.1016/j.apgeochem.2011.05.013

    Article  Google Scholar 

  • Monjerezi M, Vogt RD, Aagaard P, Saka JDK (2012) The hydro-geochemistry of groundwater resources in an area with prevailing saline groundwater, lower Shire Valley, Malawi. J Afr Earth Sci 68:67–81. doi:10.1016/j.jafrearsci.2012.03.012

    Article  Google Scholar 

  • Nabi Bidhendi GR, Karbassi AR, Nasrabadi T, Hoveidi H (2007) Influence of copper mine on surface water quality. Int J Sci Technol 4(1):85–91. doi:10.1007/BF03325965

    Article  Google Scholar 

  • Perry EF (2001) Modeling rock–water interactions in flooded underground coal mines, Northern Appalachian Basin. Geochem Explor Environ Anal 1(1):61–70. doi:10.1144/geochem.1.1.61

    Article  Google Scholar 

  • Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26(9):1981–2014. doi:10.1029/WR026i009p01981

    Article  Google Scholar 

  • Preacher KJ, MacCallum RC (2002) Exploratory factor analysis in behavior genetics research: factor recovery with small sample sizes. Behav Genet 32(2):153–161. doi:10.1023/A:1015210025234

    Article  Google Scholar 

  • Quo H, Hu Q, Zhang Q, Feng S (2012) Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang Lake, China: 2003–2008. J Hydrol 416–417:19–27. doi:10.1016/j.jhydrol.2011.11.027

    Google Scholar 

  • Rindskopf D (1984) Structural equation models: empirical identification, Heywood cases, and related problems. Sociol Methods Res 13(1):109–119. doi:10.1177/0049124184013001004

    Article  Google Scholar 

  • Rosenthal E, Jones BF, Weinberger G (1998) The chemical evolution of Kurnub Group paleowater in the Sinal-Negev province—a mass balance approach. Appl Geochem 13(5):553–569. doi:10.1016/S0883-2927(97)00092-9

    Article  Google Scholar 

  • Savage KS, Bird DK (2002) Inverse geochemical modeling of pit lake evolution in a high-arsenic, alkaline pit lake. Geol Soc Am Abstr 34:51–52

    Google Scholar 

  • Sharda VN, Kurothe RS, Sena DR, Pande VC, Tiwari SP (2006) Estimation of groundwater recharge from water storage structures in a semi-arid climate of India. J Hydrol 329(1–2):224–243. doi:10.1016/j.jhydrol.2006.02.015

    Article  Google Scholar 

  • Sparks DL (1996) Methods of soil analysis. Part 3. Chemical methods. SSSA Book Series No. 5. SSSA and ASA, Madison, WI

  • USSL (1954) Diagnosis and improvement of saline and alkali soils, USDA, Handbook 60, p 147

  • Velicer WF, Fava JL (1998) Effects of variable and subject sampling on factor pattern recovery. Psychol Methods 3(2):231–251. doi:10.1037/1082-989X.3.2.231

    Article  Google Scholar 

  • Walker WR, Skogerboe GV (1987) Surface irrigation: theory and practice. Prentice-Hall, Englewood Cliffs, p 386

    Google Scholar 

  • Williams RE (1982) Statistical identification of hydraulic connections between the surface of a mountain and internal mineralized sources. Ground Water 20(4):466–478. doi:10.1111/j.1745-6584.1982.tb02767.x

    Article  Google Scholar 

  • World Health Organization (WHO) (1993) Guidelines for drinking water quality. Recommendations, vol 1, 2nd edn. WHO, Geneva, pp 130

  • Yesilnacer MI (2008) Hydrochemical characteristics and the effects of irrigation on groundwater quality in Harran Plain, GAP Project, Turkey. Environ Geol 54(1):183–196. doi:10.1007/s00254-007-0804-9

    Article  Google Scholar 

  • Yesilnacer MI, Uyanki S (2005) Investigation of water quality of the world’s largest irrigation tunnel system, the Sanliurfa Tunnels in Turkey. Fresenius Environ Bull 14(4):300–306

    Google Scholar 

  • Yesilnacer MI, Yenigun I (2011) Effect of irrigation on a deep aquifer: a case study from the semi-arid Harran Plain, GAP Project, Turkey. Bull Eng Geol Environ 70(2):213–221. doi:10.1007/s10064-010-0299-6

    Article  Google Scholar 

  • Yidana SM (2010) Groundwater classification using multivariate statistical methods: Southern Ghana. J Afr Earth Sci 57(5):455–469. doi:10.1016/j.jafrearsci.2009.12.002

    Article  Google Scholar 

  • Zhang Y, Xia J, Liang T, Shao Q (2010) Impact of water projects on river flow regimes and water quality in Huai River Basin. Water Resour Manag 24(5):889–908. doi:10.1007/s11269-009-9477-3

    Article  Google Scholar 

  • Zhang B, Song X, Zhang Y, Han D, Tang C, Yu Y, Ma Y (2012) Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res 46(8):2737–2748. doi:10.1016/j.watres.2012.02.033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Fakhreddin Afzali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskooni, E.K., Kompanizare, M. & Afzali, S.F. Chemical assessment of dam water irrigation effects on groundwater qualities in Bigherd plain, Fars Province, Iran. Environ Earth Sci 76, 238 (2017). https://doi.org/10.1007/s12665-017-6550-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6550-8

Keywords

Navigation